Appendix A Soils Investigation Report

Soils Investigation Report	TREK Geotechnical: North Kildonan Feedermain Detailed Design – Geotechnical Report
Addendum No.1	TREK Geotechnical: North Kildonan Feedermain – Micro Tunnelling Option Considerations

North Kildonan Feedermain Detailed Design -Geotechnical Report

Prepared for:

Associated Engineering 203 - # Five Donald Street Winnipeg, Manitoba R3L 2T4

Project Number: 0115 004 00

Date: January 15, 2014

Distribution:

Mr. Colin McKinnon , P.Eng., PMP Mr. Jason Lueke, Ph.D.,P. Eng.

January 15, 2014

Our File No. 0115 004 00

Mr. Colin McKinnon, P.Eng., PMP Associated Engineering 203 - # Five Donald Street Winnipeg, Manitoba R3L 2T4

RE: North Kildonan Feedermain – Geotechnical Report

TREK Geotechnical Inc. is pleased to submit our geotechnical report for the detailed design of the North Kildonan Feedermain

Please contact Nelson Ferreira if you have any questions.

Sincerely,

TREK Geotechnical Inc. Per:

Nelson John Ferreira, M.Sc., P.Eng.

Principal Tel: 204.975.9433

NJF:jh Encl.

Revision History

Revision No.	Author	Issue Date	Description	
0	NJF	January 15 2014	Final Report	

Authorization Signatures

Prepared By:

Nelson John Ferreira, M.Sc., P.Eng. Geotechnical Engineer

Ken Skaftfeld, P.Eng.

Senior Geotechnical Engineer

Certificate of Authorization Trek Geotechnical Inc. No. 4877 Date: Stan. 15 20/4

Reviewed By:

Table of Contents

Letter of Transmittal

Revisi	on Hist	ory and	Authorization Signatures					
1.0	Introd	uction a	nd Background1					
2.0	Review	iew of Existing Information1						
3.0	Sub-S	Surface Investigation						
4.0	Sub-su	urface C	onditions					
	4.1	Genera	l Soil and Bedrock Stratigraphy3					
		4.1.1	Clay Fill					
		4.1.2	Lacustrine Clay					
		4.1.3	Alluvial Deposits					
		4.1.4	Silt Till					
		4.1.5	Limestone Bedrock					
	4.2	Ground	lwater Conditions					
		4.2.1	Bedrock Aquifer					
		4.2.2	Overburden7					
5.0	Rivert	oank Sta	bility Analysis7					
	5.1	Design	Objective7					
	5.2	Slope S	Stability Analysis					
	5.3	Numerical Model Description						
	5.4	Stabilit	y Modelling Results					
		5.4.1	West Riverbank					
		5.4.2	East Riverbank9					
6.0	Geote	chnical (Considerations and Recommendations10					
	6.1	Feeder	main Alignment and Profile10					
	6.2	Erosion	10 Protection					
	6.3	Excava	tions and Shoring11					
		6.3.1	General					
		6.3.2	Cohesive Soils					
		6.3.3	Non-cohesive Soils					

	6.4	Horizontal Directional Drilling
7.0	Permi	tting
8.0	Closu	re13
9.0	Refere	ences

List of Tables

Table 4.1	Groundwater Monitoring Data (TREK THs)	6
Table 4.2	Groundwater Monitoring Data (KGS THs)	6
Table 5.1	Soil Properties used in Stability Modeling	9
Table 6.1	Riprap Gradation	10
Table 6.2	Recommended Design Parameters for Cantilevered Walls - Cohesive Soils	12
Table 6.3	Recommended Design Parameters for Cantilevered Walls in Alluvial Soils	6

List of Figures

Figure 01	TH13-01 Core Samples
Figure 02	TH13-05 Core Samples
Figure 03	Slope Stability Model Output Example
Figure 04	West Riverbank (October 23, 2013)
Figure 05	East Riverbank (November 8, 2013)

List of Appendices

- Appendix A Test Hole Logs
- Appendix B Test Hole Logs (By Others)
- Appendix C Laboratory Testing Results
- Appendix D Unconfined Compressing Testing Results (bedrock cores)

1.0 Introduction and Background

The existing North Kildonan feedermain was constructed in 1972 and is a critical component of the City of Winnipeg's water distribution system. Where it crosses the Red River just north of the Kildonan Settlers Bridge, the feedermain consists of a 600 mm diameter steel pipe placed on top of the channel bottom (Drawing 01). A major leak in the pipe at the river crossing occurred in the fall of 2012 and temporary repairs to the pipe were completed in the spring of 2013. As part of the current Operating and Capital Works budget, the City of Winnipeg plans to replace the river crossing segment of the feedermain in 2014.

A preliminary engineering study was completed by Associated Engineering in July 2013 with geotechnical support from TREK Geotechnical Inc. (TREK). The geotechnical work was a desktop study using existing soil and groundwater information and limited stability modelling. Based on the outcome of the preliminary study, the Water and Waste Department determined that horizontal directional drilling (HDD) is the preferred method of installation for the new pipe segment and Associated Engineering proposed a new feedermain alignment to suit this installation method. In support of detailed design, the geotechnical scope of work carried out by TREK includes review of existing information, a sub-surface investigation, assessment of sub-surface conditions, in particular the condition of the bedrock, a riverbank slope stability analysis, and recommendations for stabilization and erosion protection works if required. This report summarizes the geotechnical component of the detailed design.

2.0 Review of Existing Information

Existing information was reviewed for geotechnical information pertinent to the project. The information was provided by various departments within the City of Winnipeg (Water and Waste, Public Works, Waterways) and Associated Engineering. The information reviewed includes the following:

- Preliminary Engineering for the Rehabilitation or Replacement of the North Kildonan Feedermain (Associated Engineering July 2013): The report includes relevant historical information, a preliminary riverbank stability assessment, and geotechnical considerations and recommendations for various new feedermain rehabilitation or replacement options.
- North Kildonan Feedermain Record Drawings (Various Years): As-built drawings from 1972 for the current feedermain (Drawing No.:D-1251) contained relevant information on riverbank and riverbed geometry, indicated the riverbanks in the vicinity of the feedermain had been improved and a riprap blanket had been placed on the riverbank.
- Forcemain Sub-Surface Investigation (KGS Group, November 2012): Three test holes were drilled into limestone bedrock on the south side of the Settlers Bridge and piezometers were installed into overburden soils and bedrock to measure groundwater levels. Test holes logs are included in Appendix B.

- Settlers Bridge Design and Construction (Various Reports 1988 to 1990): Relevant information includes test logs, record drawings of the construction works which included riprap and riverbank stabilization on the west bank (rock columns), and performance monitoring results related to ground movements and groundwater levels. Test hole logs are included in Appendix B.
- Aerial Photos (Various Years from 1948 to 2008): Aerial photo interpretation was undertaken on stereo pairs to identify historical riverbanks movements or evidence of historical riverbank erosion.
- Survey Information Survey information included Lidar survey (2008) and a river bed profile along the existing feedermain provided by the COW. Barnes & Duncan Land Surveying and Geomatics completed a detailed survey in the fall of 2013 of the riverbank and sonar soundings of the riverbed in the vicinity of the existing and proposed feedermain.

A site plan and cross-sections were generated (Drawing 01 to 04) from the information gathered and collected during this assignment which includes test hole locations, relevant bridge works, bridge monitoring instrumentation locations, and interpreted soil and bedrock units.

3.0 Sub-Surface Investigation

A sub-surface investigation was carried out along the proposed feedermain alignment to supplement existing information in the general area of the crossing. The intent of the investigation was to determine sub-surface conditions that may impact the constructability and performance of the proposed feedermain such as the presence of wet silts and sands (potential to slough), delineation of alluvial and lacustrine soils (riverbank stability implications) and competence of the bedrock (hydraulic fracturing, loss of drill fluid).

Four test holes were initially planned along the proposed feedermain alignment; one test hole at each riverbank and two within the river channel. The riverbank test holes (TH13-01 and TH13-04) were to be drilled just into the bedrock on the east and west banks respectively to obtain information primarily for riverbank stability assessment and shoring. The test holes within the channel (TH 13-02 and TH13-03) were to be drilled 18 m into bedrock to determine conditions to the proposed depth of the new feedermain installation within the rock. These test holes were to be drilled off of a barge before freeze-up as ice conditions in the winter to support drilling equipment are known to be poor; open water is common in this channel section immediately downstream of the outfall from the North End Water Pollution Control Centre. However, the barge could not be launched due to low river levels at the time of the investigation (early November) and drilling test holes within the channel was therefore not possible. The sub-surface investigation was subsequently modified to exclude the channel test holes but obtain additional bedrock information at the riverbank locations. This included drilling to a greater depth on the east side of the river (TH13-01) and adding an additional deep test hole on the west bank (TH13-05).

TH13-01, TH13-04 and TH13-05 were drilled on November 7th and 8th, 2013 at the locations shown on Drawing 01. Drilling was performed by Paddock Drilling Ltd. (Brandon, MB) under the supervision of TREK personnel. Test holes were drilled using an Acker SS3 and CME-850 track mounted drill rigs equipped with either 125 mm diameter augers or 170 mm hollow stem augers. Test holes were drilled to power auger refusal where the drilling method was switched to HQ coring equipment to advance the test holes. TH13-01 and TH13-05 were drilled approximately 20 m into bedrock (~37m total depth) while TH13-04 was drilled approximately 4 m into bedrock (~22 m total depth). A standpipe piezometer was installed in the bedrock in TH13-04 and TH13-05 to measure short term groundwater levels in the bedrock. Standpipe piezometers were installed in each of the alluvial and bedrock units in TH 13-01 to measure short term levels in these two units and determine vertical flow direction (gradient).

Sub-surface soils observed during the drilling were visually classified based on the Unified Soil Classification System (USCS). Other pertinent information such as drilling, groundwater and backfill conditions was also recorded. Samples retrieved during drilling include disturbed grab (auger flight) samples, relatively undisturbed Shelby tubes, and bedrock core. All samples were transported to TREK's laboratory in Winnipeg, Manitoba for laboratory testing and further classification. Laboratory testing consisted of moisture content determination on all samples. Undrained shear strength testing (pocket penetrometer, Torvane and unconfined compression) and unit weight determination was also completed on select samples. Unconfined compression test were performed on select rock core samples at Thurber Engineering Ltd.'s Laboratory in Edmonton, Alberta.

Test hole logs are attached in Appendix A and include soil and rock descriptions, the elevation of soil and rock units encountered and other pertinent information such as groundwater levels and sloughing conditions. Laboratory testing results on soil samples are included on the individual test hole logs in Appendix A or separately in Appendix C and Appendix D (unconfined compression test results bedrock core samples). Test hole locations were surveyed by Barnes & Duncan Land Surveying and Geomatics. Existing test hole logs from previous investigations by the KGS Group (KGS) and Dyregrov and Burgess in the immediate area of the crossing are included in Appendix B with their locations shown on Drawing 01. Test holes by Dyregrov and Burgess are referred to herein as TH1 to 23 and DMT 1 to 7 (dilatometer test). The KGS test holes drilled in 2012 at the forcemain are referred to herein as TH 12-01, TH 12-02 and TH 12-03.

4.0 Sub-surface Conditions

4.1 General Soil and Bedrock Stratigraphy

The soil stratigraphy on the west riverbank generally consists of lacustrine clay with shallow silt layers (TH1 to TH4, TH12-03). A thin veneer (1.5 m thick) of alluvial clay was encountered in TH5 and TH13-04 which increased in thickness to 9 m towards the river (TH12).

The east riverbank generally consists of alluvial clays, silts, sands and gravels (TH13-01 drilled on the east bank along the proposed alignment). A lacustrine clay layer is evident in TH12-01, 06 and

TH07 on the east bank and tends to increase in thickness away from the river. Lacustrine clay was not encountered in the east riverbank along the proposed feedermain (TH13-01).

Based on information from previous geotechnical investigations for the bridge, the riverbed stratigraphy is expected to consist of relatively thin alluvial deposits overlying till and limestone bedrock. Till and bedrock may be exposed in areas of the riverbed (based on observations by divers during a recent inspection).

The interpreted soil and bedrock units are shown in cross-section on Drawing 02 and a brief description of these units is provided below. Where the descriptions provided include a consolidation of test hole data from previous investigations they are referred to herein as "overall". Where the results are specific to test holes drilled by TREK along the feedermain alignment, they are referred to as such. All interpretations of soil stratigraphy for the purposes of design should refer to the detailed test hole logs in Appendix A. Information from investigations by others attached in Appendix B cannot be corroborated by TREK and should therefore be considered as supplemental information only.

4.1.1 <u>Clay Fill</u>

Clay fill was encountered on the east riverbank in TH13-01 which was drilled through an existing road bed. The clay fill is silty and contains trace gravel and trace organics, brown, moist, stiff and of high plasticity. Moisture contents range from 23% to 26%, with an average of 25%.

4.1.2 Lacustrine Clay

The lacustrine clay is silty, brown to grey, moist, and of high plasticity. Trace silt inclusions are present throughout the stratum and sand and gravel inclusions are present near the silt till contact. Overall, undrained shear strengths on relatively undisturbed (Shelby Tubes) samples range from 23kPa to 75 kPa with an average of 50 kPa, indicating a soft to firm consistency. In comparison, the average undrained shear strength in TH13-04 drilled along the feedermain alignment is 44.5 kPa. Overall bulk unit weights range from 16.2 to 18.3 kN/m³ with an average of 16.9 kN/m³ compared to an average of 18 kN/m³ in TH 13-04. Moisture contents range from 28% to 61%, with an average of 50% in TH 13-04.

Silt layers were encountered within the upper 2 to 4 m of the lacustrine clay at test hole locations outside of vicinity of the river channel and at prairie elevation (*e.g.* TH 3). The silt is light brown, moist to wet, soft, and contains varying amounts of fine grained sand.

4.1.3 <u>Alluvial Deposits</u>

West Riverbank

Alluvial clay was encountered at the surface of four test holes in the vicinity of the riverbank on the west bank (TH13-04, TH5, TH12, and TH13). The thickness of the layer ranges from 1.5 m (TH13-04) to 9 m in TH 12 drilled along the bridge alignment. The alluvial clay is silty, brown becoming grey with depth, moist, stiff and of medium to high plasticity. An undrained shear strength of 23 kPa

was measured on one sample in TH12 where the thickest layer was encountered. Overall bulk unit weights range from 17.7 to 18 with an average of 17.8 kN/m³. Moisture contents range from 25% to 28% based on two samples.

East Riverbank

Alluvial soils on the east river bank consist of varying proportions of clay, silt, sand, and gravel as identified in TH13-01, TH6 to 8, TH12-01 and TH12-02. The consistency of the alluvial soils varies considerably over short distances ranging from loose (soft) to dense (stiff) and moist to saturated depending on the location of the water table. An undrained shear strength of 23 and 53 kPa and a bulk unit weight of 18.7 kN/m3 was measured in TH13-01. Moisture contents range from 18% to 37% with an average of 30% in TH13-01.

4.1.4 <u>Silt Till</u>

Silt till is present below the lacustrine and alluvial deposits at an overall contact elevation between 210.7 and 216.0 m with average overall contact elevation of 213.4 m. The till matrix is predominately low plastic silt with varying amounts of clay, sand, and gravel and can contain cobbles and boulders. The till is light brown, moist to wet, loose to dense. Standard Penetration Tests blow counts (N) of 8 to 50 blows per 300mm with an average of 28 were measured in the till in TH13-01 (N= 29, 50) and TH12-02 (N=8).

4.1.5 <u>Limestone Bedrock</u>

The till is underlain with bedrock at overall contact elevations between 209.2 and 211.0 m. Along the feedermain alignment, the contact elevation is estimated to be 210.2 m. The bedrock at the west riverbank consisted of dolomite or dolomitic limestone while the east riverbank consists of mudstone, dolomitic mudstone, dolomite and dolomitic limestone. The bedrock is brown to grey, vuggy, and can contain chert nodules, laminations, and calcareous mudstone. The bedrock units encountered are consistent with geological maps of the area which indicate that the crossing is located on either side of a geological contact between the Selkirk Member and the lower part of the Fort Garry Member of the Red River Formation.

The top metre of bedrock may be broken, highly fractured, or consists of thinly bedded rock. Horizontal and vertical fractures were noted throughout the bedrock units below this upper zone. The fractures tended to be rough and undulating with some of the fractures being in-filled with clay (rock flour). The bedrock is considered to be generally sound (RQD > 70% over 3.0m) which is consistent with previous sub-surface investigations. Photos of core samples are shown on Figure 01 & 02. Test holes drilled along the proposed alignment indicate the bedrock at the east riverbank (TH13-01) contains two zones of unsound bedrock; RQDs of less than 35% were recorded between elevations 207.5 m to 202.7 m and elevations 196.6 m to 193.5 m. A zone of unsound bedrock was also encountered in the vicinity of TH16 during drilling of test holes during design of the bridge.

Unconfined compressive strengths testing was completed on 7 bedrock core samples chosen to reflect the geology at both the west and east riverbanks at variable elevations, in different bedrock types and in bedrock of differing quality. The measured unconfined compressive strengths range from 11.9 to

49.1 MPa with an average 32.3 MPa. These values are consistent with strength testing data from Manitoba Department of Energy and Mines for the Selkirk Member and Lower Fort Garry Member (Bannatyne, 1988). Results from unconfined compression testing are included in Appendix D.

4.2 Groundwater Conditions

Groundwater conditions observed by TREK at the time of drilling are shown as notes on individual test hole logs. These notes refer to depths of seepage observed in open holes drilled using solid stem augers and water levels recorded in open holes immediately after retrieving augers and/or drill casing. Seepage conditions could not be observed when test holes were advanced using hollow stem augers and drill casing. Seepage conditions are also indicated on test hole logs prepared by others (Dyregrov and Burgess, KGS). These logs indicate seepage and sloughing can occur within the wet alluvial soils, silt till and near-surface silt layers. It is important to recognize that the short-term groundwater levels observed may vary seasonally, after heavy precipitation events or as a result of construction activities.

Piezometric (groundwater) elevations measured in TREK's test holes drilled along the proposed feedermain alignment are summarized in Table 4.1 with levels as of November 28th 2013 shown on the individual test hole logs in Appendix A. Groundwater levels measured along the forcemain south of the bridge are summarized in Table 4.2.

TREK Test Hole # >	TH13-01	TH13-01	TH13-04	TH13-05	River Level
Piezometer # >	SP1A	SP1B	SP4	SP5	At Bridge
Piezometer Tip Elev. (m) >	207.24	215.17	205.55	191.21	
Geologic Unit >	Bedrock	Alluvial Sand	Bedrock	Bedrock	
Date	Geodetic Elevation (m)				
6-Nov-13		-	222.97	-	-
7-Nov-13	223.18	222.99	-	-	-
14-Nov-13		-	223.16	223.30	
28-Nov-13	223.18	222.41	223.24	223.30	221.92

Test Hole # >	TH12-02	TH12-02B	TH12-02B	TH12-03	TH12-03B	TH 12-03B	River
Piezometer Type >	SPT	SPT	PN	STP	STP	PN	Level
Piez. Tip Elev. (m) >	202.31	210.76	216.86	200.82	209.86	219.00	At
Geologic Unit >	Bedrock	Silt Till	Silty Sand	Bedrock	Silt Till	Silty Clay	Bridge
Date	Geodetic Elevation (m)						
15 May-13	225.05	225.2	223.26	225.11	225.20	226.04	226.33

4.2.1 <u>Bedrock Aquifer</u>

Groundwater levels in the bedrock aquifer on November 28th range from elevation 223.2 to 223.3 m compared to a river elevation of 221.9 m. This river elevation is representative of winter river levels which are drawn down from a regulated summer water elevation of about 223.7 m. Groundwater levels in the bedrock aquifer in May of 2013 were at about elevation 225.1 m compared to a spring river level of 226.3 m. Historical data collected from a Provincial observation well about 1.5 km west of the crossing indicates that regional groundwater levels are highest during the period from October through June with the lowest levels in late July or early August. The measured groundwater levels at the site are therefore likely reflective of the high end of the seasonal range of regional groundwater levels.

Groundwater levels in the till at the site compare well with bedrock aquifer levels indicating the two geologic units are hydraulically connected. During the high river stage in May of 2013, the river level was about 1.2 m higher than measured in the bedrock aquifer while in November of 2013, levels in the aquifer were about 1.3 m above the river level. These results show that a hydraulic connection exists between the river and aquifer but that groundwater levels may be influenced by regional levels; groundwater flow may be downward during high river levels (in particular when the river stage is higher than regional levels) and upward during low river levels when the regional groundwater levels remain higher than the river stage.

4.2.2 <u>Overburden</u>

A slight downward flow is evident between the alluvial soils on the east riverbank and the river in late November 2013 after the river has drawn down (TH 13-01). In May of 2013 however, the piezometric elevation measured in the silty sand at the forcemain south of the bridge on the east riverbank was considerably lower than the river stage (Elev. 223.3 m compared with a river Elev. of 226.3 m as seen in TH 12-02B). This reading is unexpected as groundwater levels in permeable riverbank soils are generally strongly influenced by river levels (i.e. higher levels in the silty sand would be expected at this river stage). The pneumatic piezometer installed in TH12-02B may be malfunctioning (common for pneumatic piezometers). In this regard, further instrumentation monitoring along the feedermain will be undertaken in the spring of 2014 to assess seasonal groundwater levels at a high river stage, especially in the alluvial soils.

5.0 Riverbank Stability Analysis

5.1 Design Objective

The design factor of safety (FS) associated with riverbank instabilities must reflect the uncertainty in parameters used in the analysis and the consequences of continued movements (e.g. creep movements) or failure of the riverbank. In this regard, riverbanks with a minimum FS greater than 1.3 are considered to be relatively stable, however, creep movements are possible. A factor of safety greater than 1.5 was therefore selected as the design objective for the stability of the ground through

which the feedermain passes since ground movements are unlikely to occur and in recognition of the consequences of a failure.

5.2 Slope Stability Analysis

A slope stability analysis was conducted on 5 cross-sections (Cross-Section A to E) along and near the feedermain to evaluate the riverbank stability in the vicinity of the feedermain. The cross-sections were generated from the survey information. The locations of the analyzed cross-sections are shown in plan on Drawing 01 and in section on Drawings 02 to 04. Iterations were performed to determine the set-back distance where the stability of the riverbank was greater than a Factor of Safety (FS) of 1.5 under typical groundwater conditions (*i.e.* to satisfy the design objective).

5.3 Numerical Model Description

The stability analysis was conducted using a steady-state finite element (FEM) seepage model (Seep/W) and a limit-equilibrium slope stability model (Slope/W) from the GeoStudio 2007 software package (Geo-Slope International Inc.).

The seepage model determined seepage gradients which were then incorporated into the stability model to calculate factors of safety against slope instabilities. Seepage gradients through the lacustrine and alluvial clays are common in riverbanks within Winnipeg; downward seepage occurs in the upper bank area, while upward seepage from the glacial till or bedrock aquifer occurs beneath the toe of the riverbank, in particular at low river levels. Consistent with the monitoring results, the groundwater elevation in the glacial till was assumed to be 1.3 m above the Winter River level for all modeling cases. Groundwater levels within the riverbank were set at approximately 2.0 m depth below ground surface in the upper bank area. A Winter River Level (WRL) at Elevation 221.8 m was used in the analysis. Flow in the unsaturated zone was not considered in the model.

The slope stability model used the Morgenstern-Price method of slices to calculate factors of safety. Critical local and global slip surfaces were determined using a grid and radius slip surface method. The soil units used in the model include the lacustrine soils (clay), alluvial soils, embankment fill, and till encountered on each bank as shown in Drawing 02. A till contact elevation of 212.0 m was assumed in both the seepage and stability models.

Table 5.1 lists soil properties used for the soil units in the numerical modeling. The soil properties assumed for the lacustrine soils are considered appropriate for Winnipeg clays along riverbanks which have experienced movements in the past. The strength properties selected for the alluvial soils are reflective of a clayey silt which is considered to be close to the lower bound of possible strength values for alluvial soils. The abutment fill properties were assigned identical properties as the alluvial soils. Properties assumed for the till are reflective of a loose to compact silt, sand and gravel matrix. The denser till and/or bedrock units are not incorporated as slip surfaces will tend not to extend into the till in any case; they typically run along the weaker clay at the till contact.

Soil Description	Unit Weight (kN/m ³)	Cohesion (kPa)	Friction Angle (deg)	Hydraulic Conductivity (m/s)
Lacustrine Clay	17	5	14	1x10 ⁻¹⁰
Alluvial Soils	18	2	23	1x10 ⁻⁰⁹
Glacial Till	19	10	30	1x10 ⁻⁰⁷
Abutment Fill (Clay)	18	2	23	1x10 ⁻⁰⁹

Table 5.1 - Soil Properties used in Stability Modeling

5.4 Stability Modelling Results

The stability analysis was run on both sides of the channel to determine the minimum FS for each riverbank and the geometry of the theoretical slip surface associated with a minimum FS of 1.5. The analysis indicates the existing FS for both banks (for the critical slip surface) is greater than 1.3. The location of the point on the ground which coincides with a minimum FS of 1.5 is shown as a set-back in plan on Drawing 05 and in section in Drawing 06. The proposed entry/exit points for the new feedermain and the pipe alignment are located within the riverbank beyond these set-backs and the pipe profile remains outside of a theoretical slip surface associated with a FS of 1.5 (i.e. the stability of the ground at all points along the pipe alignment is greater than 1.5). An example slope stability model output has been included as Figure 03.

5.4.1 <u>West Riverbank</u>

Cross section B is perpendicular to a localized steeper portion of the riverbank as shown on Drawing 01. A minimum FS of 1.38 was calculated along Cross-section B with the entry point of a theoretical slip surface with a FS of 1.5 shown on Drawing 05. However, the minimum factors of safety for Cross-Section A and C, located on either side of the proposed feedermain, are greater than 1.5. Cross-sections A and C are cut perpendicular to the bank where the grades are flatter and considered more representative of the overall riverbank geometry at this location. In our opinion, the overall stability of the west riverbank in the vicinity of the proposed feedermain satisfies the design objective and therefore a set-back distance is not required.

5.4.2 <u>East Riverbank</u>

The minimum FS for at the east riverbank along Cross-section D and E is 1.34 and 1.35, respectively. Cross-section A was not analyzed since the section is not aligned perpendicular to the riverbank and therefore not considered to be representative. The entry point of theoretical slip surfaces along Sections D and E with a FS of 1.5 are shown as a set-back line on Drawing 05.

6.0 Geotechnical Considerations and Recommendations

6.1 Feedermain Alignment and Profile

The entry/exit points and profile for the proposed feedermain (Drawing 05 and Drawing 06) are located within the riverbank on both sides where the factor of safety against slope instabilities is greater than 1.5. Bank stabilization works are not considered necessary. If the profile on the east riverbank is modified to be within the set-back indicated, additional slope stability analysis will need to be undertaken to determine if riverbank stabilization measures are required.

6.2 Erosion Protection

A riprap blanket in the lower bank area was placed in 1970s based on recorded drawings and anecdotal information. The recorded drawing indicates that riprap was placed on each riverbank along the feedermain, and in the vicinity of the outfalls, but the extent and details of the riprap blanket are not clearly noted. The lower bank area was visually inspected in late October and early November 2013 during lower levels (Figures 04 & 05). Existing riprap was visible on the west riverbank as indicated on Drawing 05, however, the extent and integrity of the riprap could not be verified. There was no visual evidence of riprap on the east riverbank. It is suspected that the riprap on both banks may have been largely covered by river deposits over the years. Erosion of the lower bank area below an approximately elevation 226 m is evident on both riverbanks (Figures 04 & 05).

It is recommended that a riprap blanket be placed in the lower bank area to supplement the existing riprap and minimize the potential for toe erosion which will result in a reduction in stability over time. The riprap blanket should extend 1.5m below normal summer river level at an elevation of 222.6 m while the upper limit of the blanket will depend on areas requiring cover. The maximum recommended extent of the riprap blanket is illustrated in plan on Drawing 05 and in section in Drawing 07 and may be modified to suit site conditions during construction. The stability of the riverbank was re-assessed with the inclusion of a riprap blanket and had a negligible change in the calculated FS.

The riprap should consist of durable, quarried limestone with particle sizes ranging from 100 mm to 450 mm in diameter. The riprap should be placed on top of non-woven geotextile (Geotex 801 or equivalent) at a thickness of 0.75 m. Table 6.1 shows the proposed riprap gradation.

Sieve Size	Percent Passing			
(mm)	Min	Max		
450	100	100		
300	25	50		
100	0	15		

Table 6.1 – Riprap Gradation

Vegetation above the riprap blanket will help minimize erosion above and behind the blanket. Bare areas and areas disturbed due to construction activities above the riprap blanket will need to be revegetated. Topsoil and seeding or placement of sod is an acceptable means of re-establishing vegetation.

6.3 Excavations and Shoring

6.3.1 <u>General</u>

It is our understanding that excavations less than 5 m deep on either riverbank will be required for installation of the proposed feedermain and to make the necessary connections with the existing pipe. Open excavations and cantilevered walls may suitable for excavations up to 3 to 4 m. Braced walls may be required for deeper excavations where temporary shoring is necessary.

All excavations must be carried out in compliance with the appropriate regulation(s) under the Manitoba Workplace Safety and Health Act and in this regard, it is anticipated that trench cages and/or temporary shoring may be required. Where open excavations are made, flattening of side slopes may be required, in particular if saturated soils (silt and alluvial soils) are encountered. Gravel buttresses could be used to prevent wet silts and sands from flowing into excavations, in conjunction with sump pits used to dewater the excavation.

Considerable difficulties can be expected when advancing excavations below the water table in alluvial soils on the east side of the river. Depending on the depth of excavation, dewatering wells may be required to lower water levels to below the base of the excavation; the requirement for this will depend on water levels at the time of construction. Basal instability associated with groundwater pressure in the till is not expected to be of concern based on the anticipated excavation depth (<5m). Once the final design is complete the need for groundwater control, working mat, etc. can be reviewed and appropriate recommendations made at that time. In this regard, additional information on groundwater levels should be obtained when shoring design is carried out and during construction.

A certain amount of ground movement behind the shoring will occur, and is largely unavoidable. The amount of movement that will occur cannot be accurately predicted, mainly because the movement is as much a function of excavation procedures and workmanship as it is a function of theoretical considerations. It is anticipated that the design of temporary shoring will be the responsibility of the Contractor. The proposed shoring design should be reviewed prior to construction and the performance of the excavation system monitored during and subsequent to construction.

6.3.2 <u>Cohesive Soils</u>

In clay and clay fill soils, a bulk unit weight of 18.0 kN/m^3 should be used for the clay/clay fill units, and 19.0 kN/m^3 for clayey silts for the calculation of lateral earth pressures. Cantilevered (unbraced) walls should be designed using the earth pressure coefficients outlined in Table 6.2 for the appropriate earth pressure condition. Braced excavations in cohesive soils should be designed using the earth pressure distributions shown on Drawing 08. The effect of any surcharge loads must be

added to the force on the wall in addition to the calculated earth pressures, as noted in the figures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads.

Earth Pressure	Earth Pressure Coefficient						
Condition	Clay / Clay Fill						
Active (K _a)	0.5						
At-rest (K₀)	0.65						
Passive (K _p)	2.0						
	Clayey Silts						
	5 5						
Active (Ka)	0.4						
Active (Ka) At-rest (Ko)							
. ,	0.4						

 Table 6.2. Recommended Design Parameters for Cantilevered Walls - Cohesive Soils

6.3.3 <u>Non-cohesive Soils</u>

In non-cohesive soils (e.g. sands and gravels), cantilevered walls should be designed to resist lateral pressures based on a triangular earth pressure distribution defined as follows using the earth pressure coefficients (K) outlined in Table 6.3 for the appropriate earth pressure condition.

$$\begin{split} P &= K \ \gamma \ D \\ \end{split} \label{eq:product} Where \quad P &= \text{lateral earth pressure at depth } D \ (kPa) \\ K &= \text{earth pressure coefficient} \\ \gamma &= \text{soil/backfill unit weight } (kN/m^3) \\ D &= \text{depth below ground surface } (m) \end{split}$$

A bulk unit weight of 21 kN/m^3 for silts and sands should be used for the calculation of lateral earth pressures where water pressure will not be present behind the wall. Where water pressures are present, the soil unit weight should be reduced to its submerged (buoyant) weight to calculate the lateral earth pressure and the water pressure should be added.

Earth Pressure Condition	Earth Pressure Coefficient						
Active (K _a)	0.35						
At-rest (K₀)	0.5						
Passive (K _p)	2.9						

Table 6.3 Recommended Design Parameters for Cantilevered Walls in Alluvial Soils

Braced excavations in the non-cohesive soils should be designed using the apparent earth pressure distribution shown on Drawing 09. Hydrostatic pressure below the water table and the effect of any surcharge loads must be added to the force on the wall in addition to the calculated earth pressures. The appropriate earth pressure condition should be used to calculate the lateral earth pressure due to surcharge loads.

6.4 Horizontal Directional Drilling

Horizontal Directional Drilling (HDD) may be affected by the following geotechnical considerations:

- Varying soil deposits above bedrock including lacustrine clay, alluvial soils, and silt till,
- Varying water levels in soil units and the potential for seepage, sloughing and caving in alluvial and till units below the water table,
- Varying bedrock conditions and strengths,
- Potential for hydro fracturing,
- Vertical fractures in the shallow bedrock may provide a seepage path for drill fluid to discharge into the river.
- Bedrock fractures may be infilled with clay (rock flour), particularly in zones of unsound bedrock

7.0 Permitting

Prior to construction, a City of Winnipeg Waterways permit is required. This report will form part of the application submission for the permit along with additional details related site access, stock piling and other pertinent construction activities that may impact riverbank stability.

8.0 Closure

The geotechnical information provided in this report is in accordance with current engineering principles and practices (Standard of Practice). The findings of this report were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that

can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this report is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This report has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Associated Engineering (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this report are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.

9.0 References

Bannatyne, B.B, 1988. Dolomite Resources of Southern Manitoba. Manitoba Energy and Mines Geological Services, Economic Geology Report ER85-1

Figures

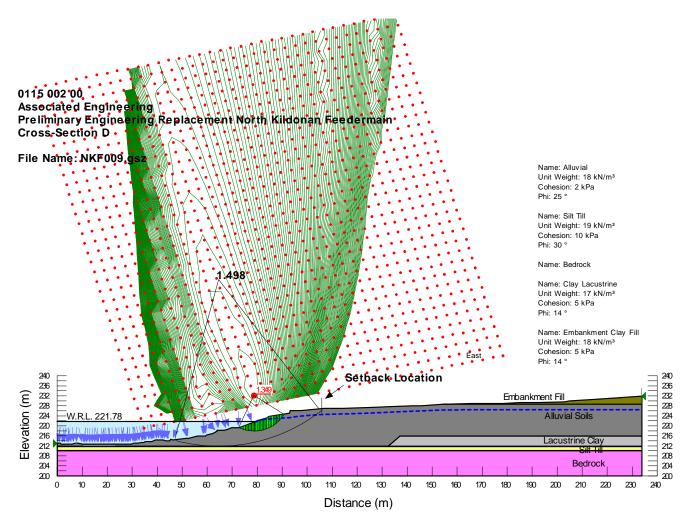


Figure 01 : TH13-01 Core Samples

Figure 02 : TH13-05 Core Samples

Z:\Projects\0115 Associated Engineering\0115 004 00 Detailed Design North Kildonan Feedermain\2 Design\2.7 Modelling\ 29/11/2013 4:42:36 PM

Figure 03 Slope Stability Model Output

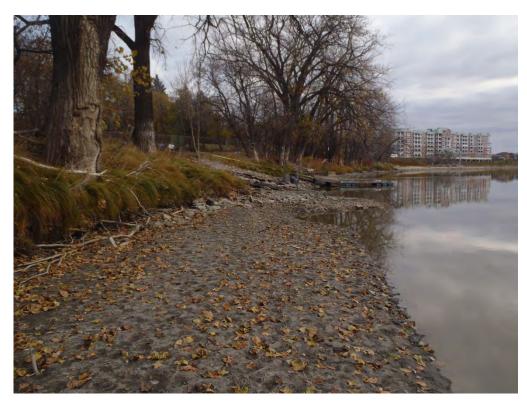


Figure 04: West Riverbank (October 23, 2013)

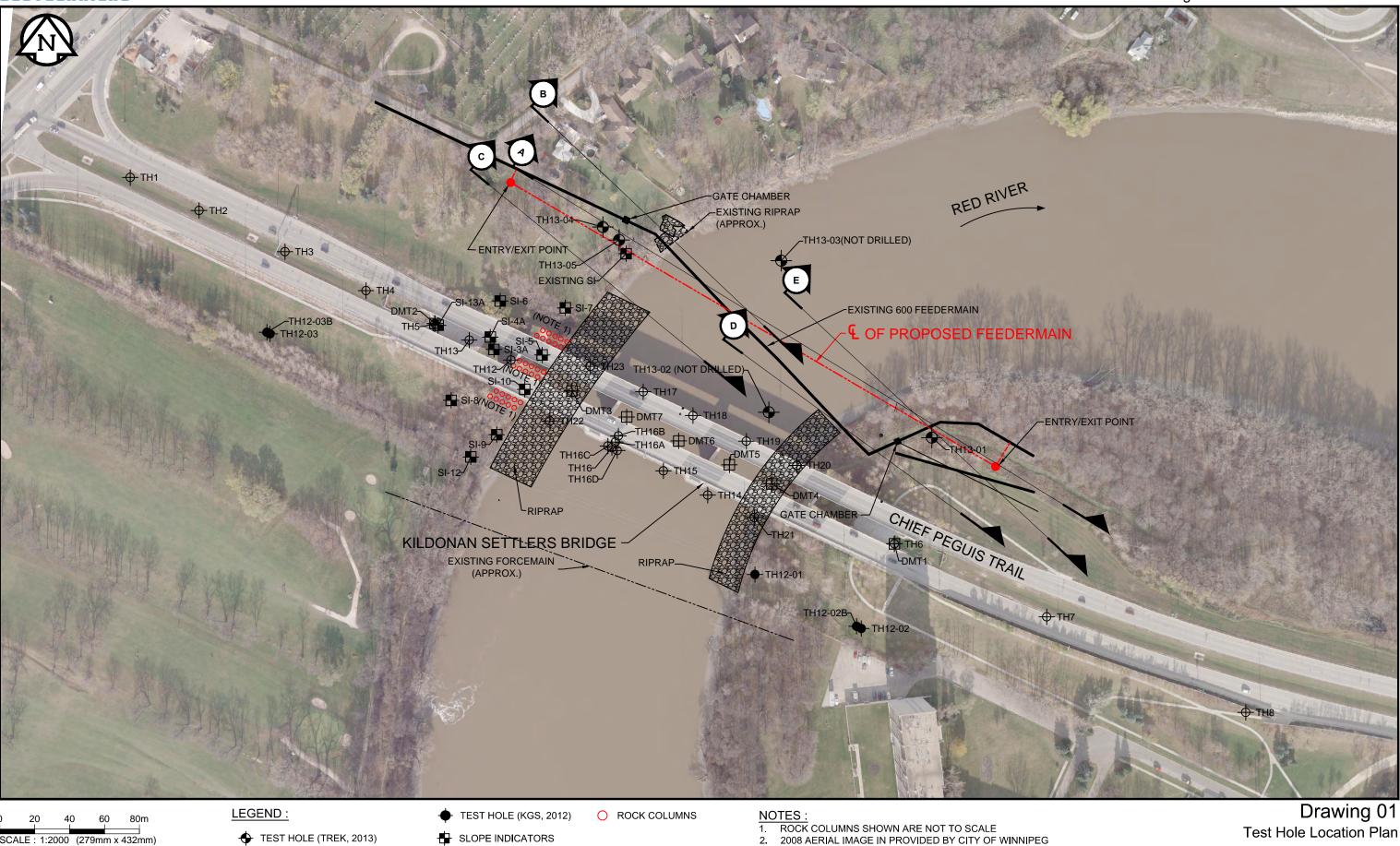
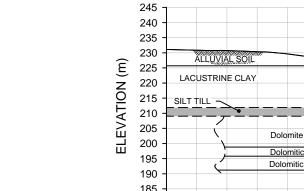


Figure 05: East Riverbank (November 8, 2013)

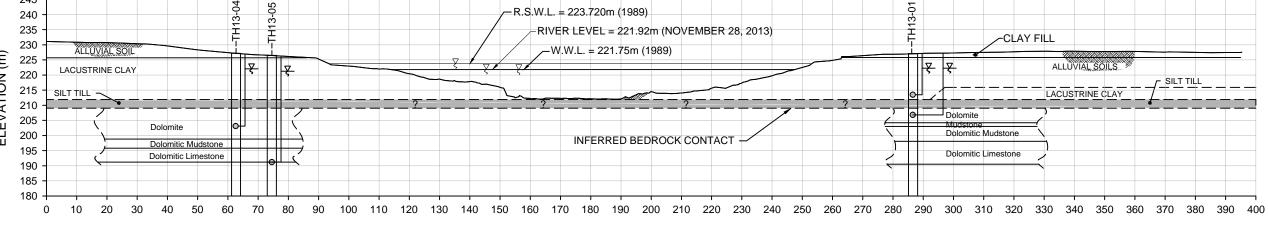
Drawings

- SCALE : 1:2000 (279mm x 432mm)
- + TEST HOLE (DYREGROV, 1988)
- DILATOMETER TESTING (DYREGROV, 1998)

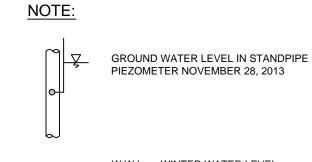
- SURVEY INFORMATION PROVIDED BY BARNES AND DUNCAN LAND SURVEYERS AND CITY OF WINNIPEG (LIDAR)


3.

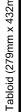
0115 004 00

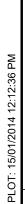


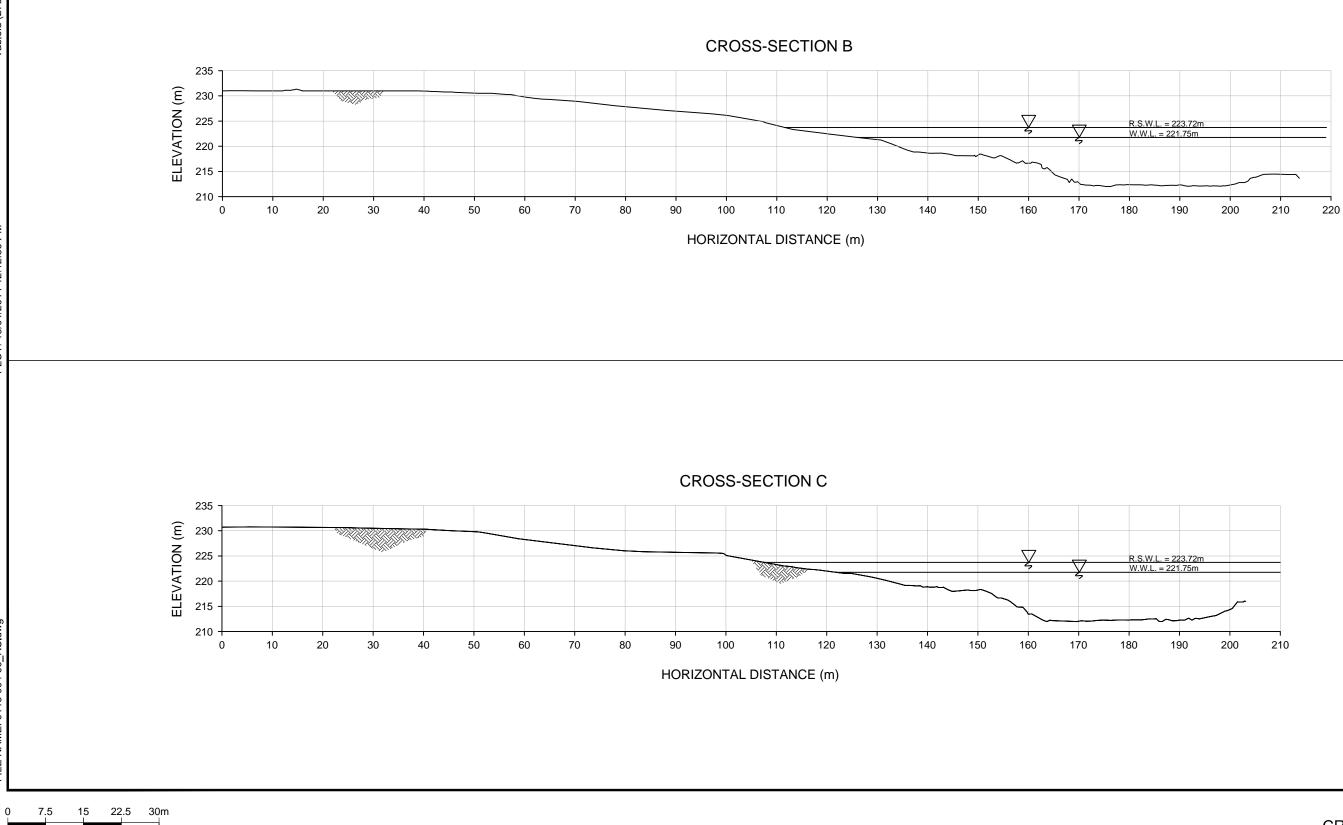
Ы


PLOT: 15/01/2014 12:11:52

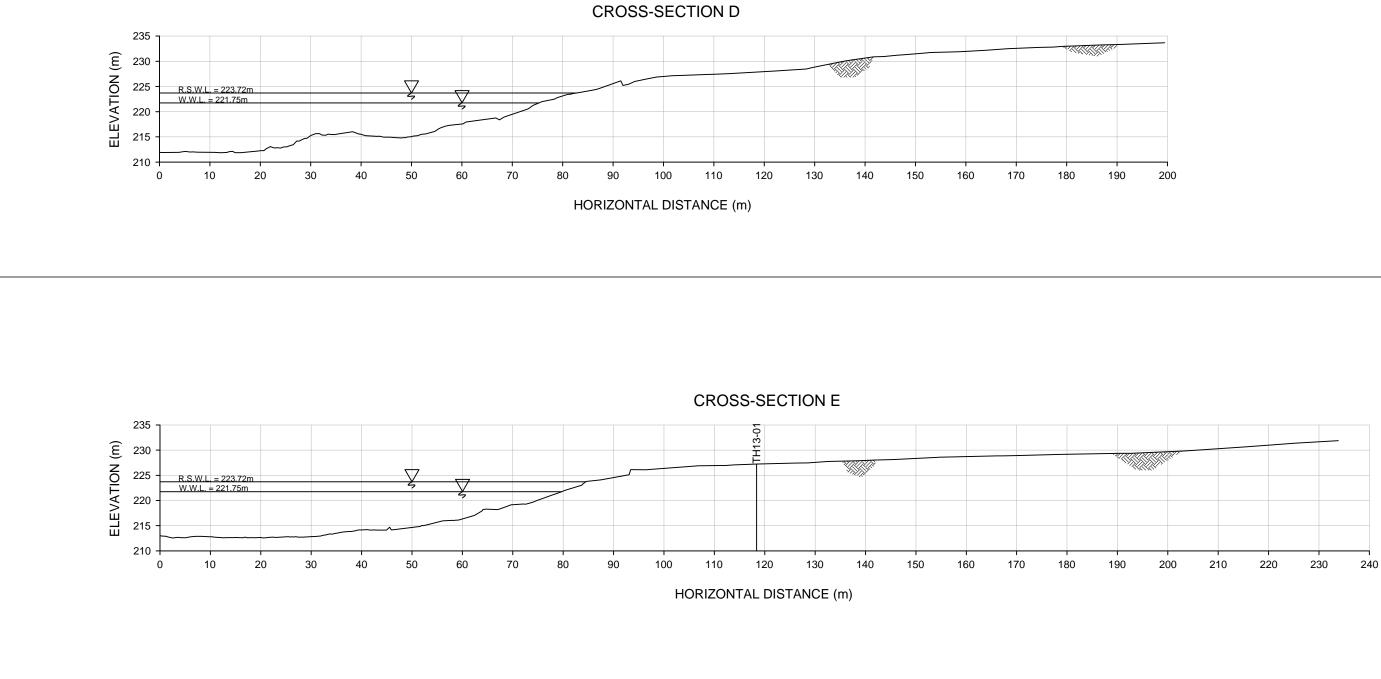
HORIZONTAL DISTANCE (m)




W.W.L. = WINTER WATER LEVEL R.S.W.L. = REGULATED SUMMER WATER LEVEL

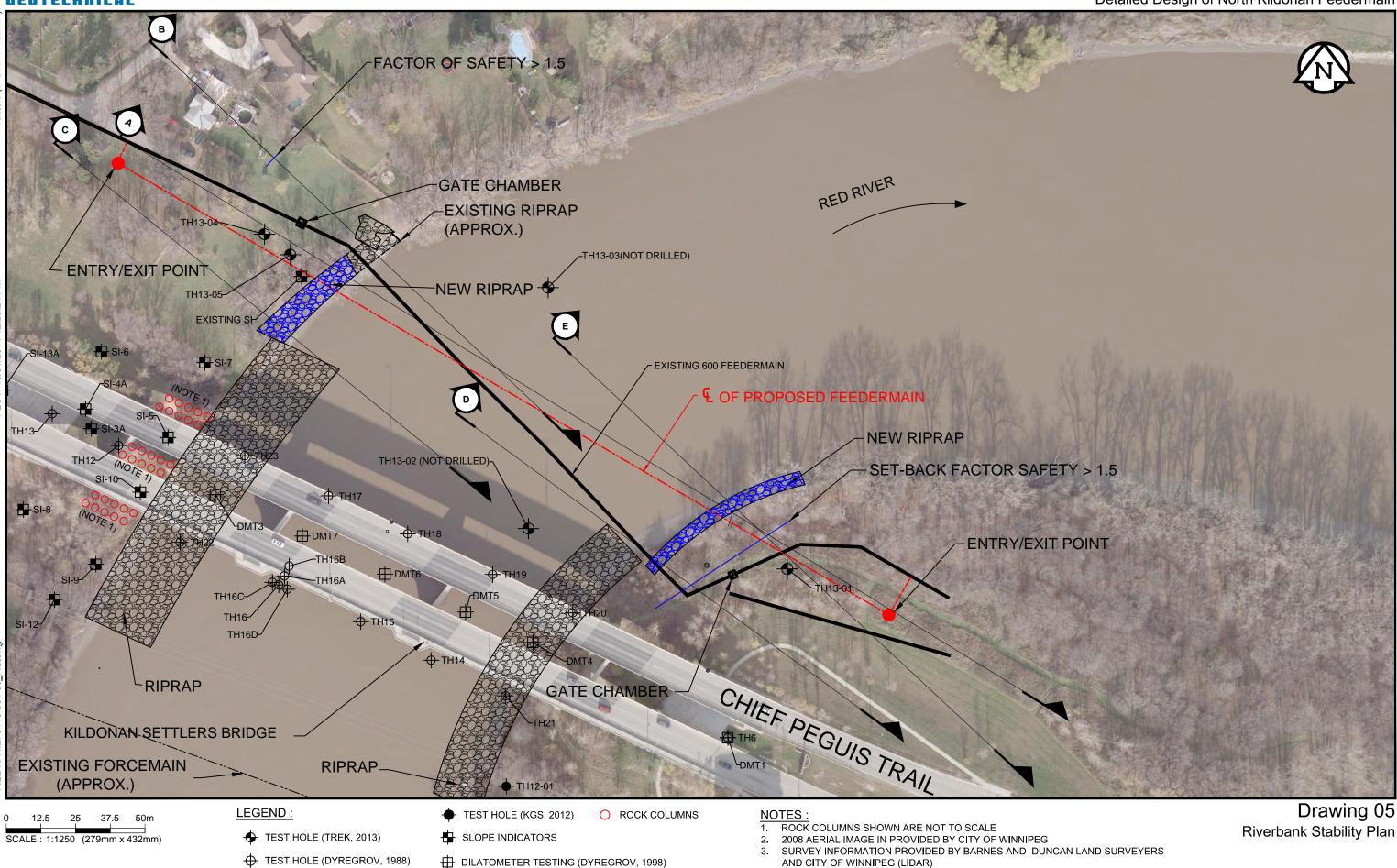

12.5 25 37.5 50m 0 SCALE : 1:1250 (279mm x 432mm)

0115 004 00


SCALE : 1:750 (279mm x 432mm)

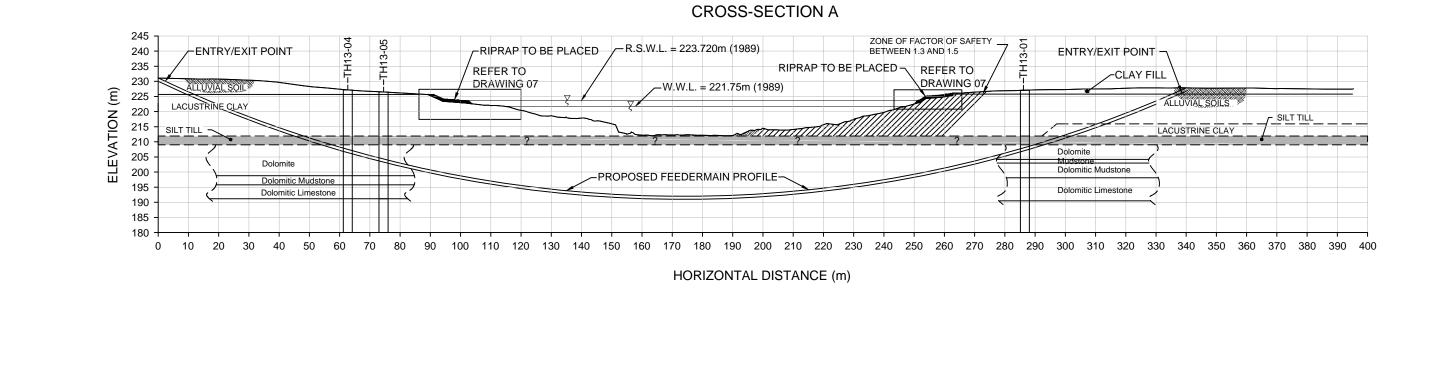
0115 004 00

PLOT: 15/01/2014 12:14:18 PM

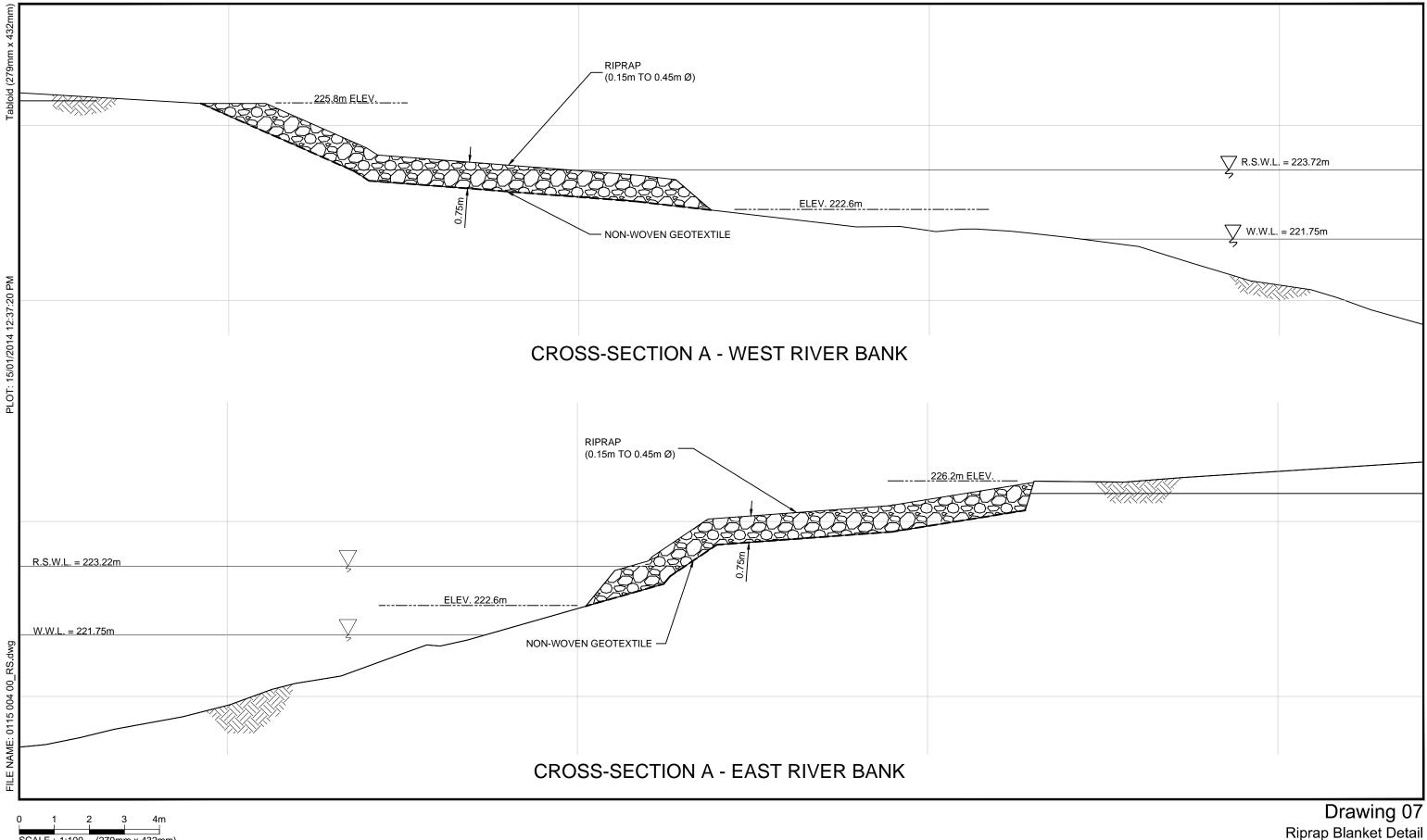


FILE NAME: 0115 004 00_RS.dwg

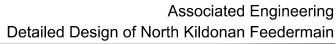
0 7.5 15 22.5 30m SCALE : 1:750 (279mm x 432mm)

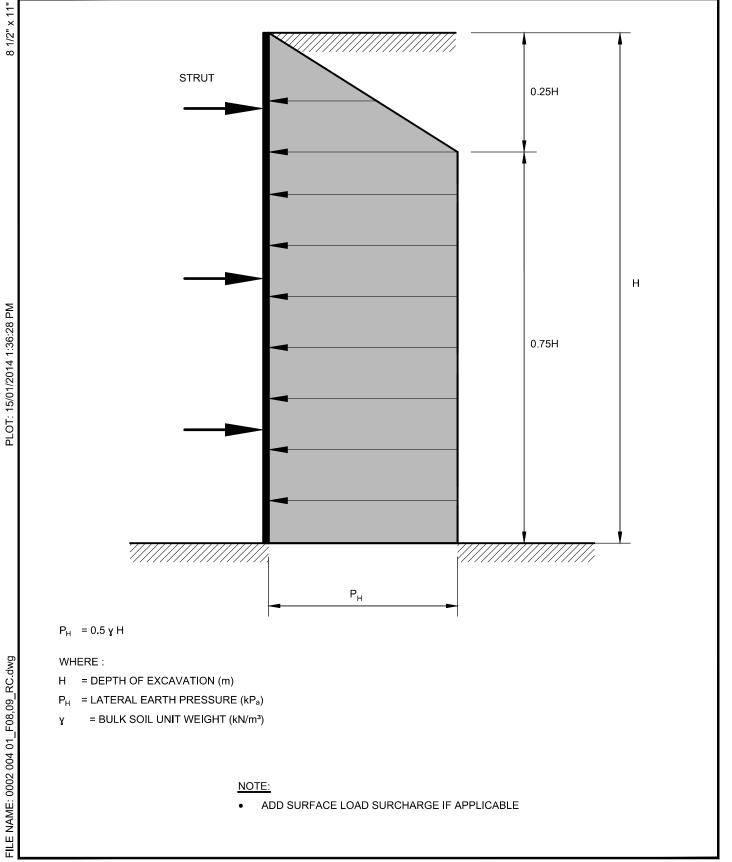

0115 004 00

0115 004 00



0 12.5 25 37.5 50m SCALE : 1:1250 (279mm x 432mm)

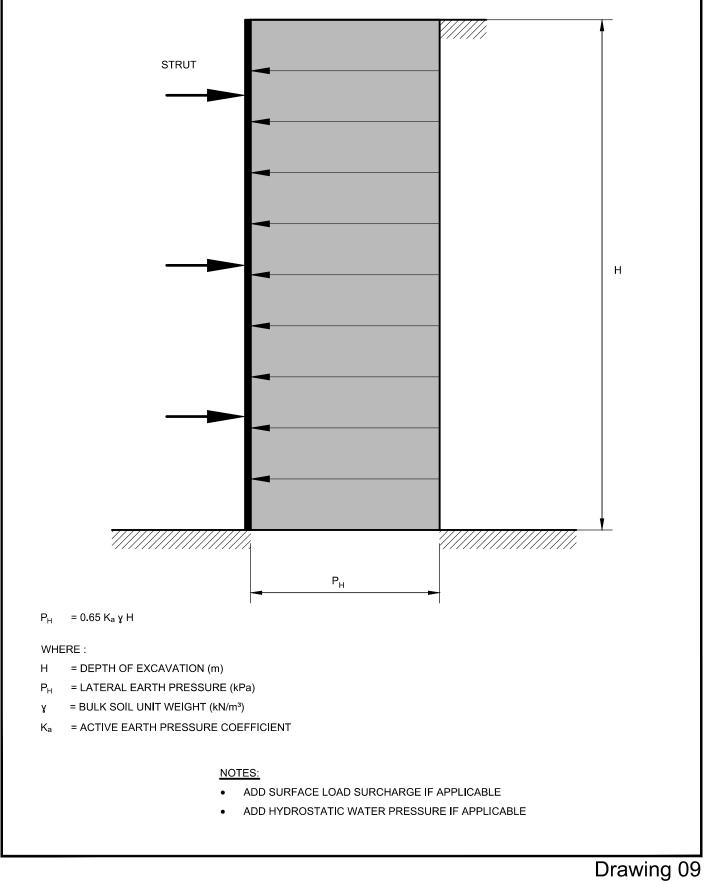

0115 004 00


SCALE : 1:100 (279mm x 432mm)

0115 004 00

0115 004 00 Associated Engineering Detailed design of North Kildonan Feedermain

Drawing 08 Lateral Earth Pressure Distribution Braced Excavation in Cohessive Soil



PLOT: 15/01/2014 1:37:18 PM

FILE NAME: 0002 004 01_F08,09_RC.dwg

0115 004 00 Associated Engineering

Detailed design of North Kildonan Feedermain

Lateral Earth Pressure Distribution Braced Excavation in non-Cohessive Soil

Appendix A

Test Hole Logs

Sub-Surface Log

1 of 3

u u <th>G</th> <th><u>eote</u></th> <th>CHN</th> <th>ICA</th> <th></th>	G	<u>eote</u>	CHN	ICA													
Contractor: Paddock Drilling Ltd. Ground Elevation: 227.36 m Method: Acker SS3 Track Mount (see notes for drilling method) Date Drilled: 7 November 2013 Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Core (C) Particle Size Legend: Fines Clay Sitt Sand Gravel Grout Generation South Spoon (SS) Split Barrel (SB) Core (C) Backfill Legend: Bentonite Clay Sitt Sand File Pack Grout Generation Southarand SR Up (G) G G MATERIAL DESCRIPTION G File Pack Grout Clay Southarand SR Up (G) G <th< td=""><td>Cli</td><td>ent:</td><td colspan="6">Associated Engineering</td><td>lumber:</td><td>0115</td><td colspan="7">0115 004 00</td></th<>	Cli	ent:	Associated Engineering						lumber:	0115	0115 004 00						
Method: Acker SS3 Track Mount (see notes for drilling method) Date Drilled: 7 November 2013 Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Core (C) Particle Size Legend: Fines Clay Silt Sand Corout South Barrel (SB) Corbels Boulders Backfill Legend: Bentonite Clay Silt South Silt Corout South With Wt South Wt Strength Mt Strength M	Pro	Project Name: Detailed Design North Kildonan Feedermain						Location	:	UTM	N-5534866	.43, E-6366	44.43			_	
Method: Acker SS3 Track Mount (see notes for drilling method) Date Drilled: 7 November 2013 Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Core (C) Particle Size Legend: Fines Clay Silt Sand Gravel Cobbles Boulders Backfill Legend: Bentonite Care met Drill Cuttings Silt Fler Pack Grout Slough Up (G) Grag Grag MATERIAL DESCRIPTION Grag Grad But Only Cut Only	Co	Contractor: Paddock Drilling Ltd.						Ground I									
Sample Type: Grab (G) Shelby Tube (T) Split Spoon (SS) Split Barrel (SB) Core (C) Particle Size Legend: Fines Clay Silt Split Spoon (SS) Split Barrel (SB) Coobles Boulders Backfill Legend: Bentonite Cement Drill Cuttings Silter Pack Coobles Boulders Slough Understand SR Sand Sand Sand Cravel Coobles Boulders Slough Understand SR Backfill Legend: Bentonite Cement Drill Cuttings Sind Backfill Wit Understand SR Understand SR Backfill Legend: Bentonite Coment Sind Sond Backfill Wit Understand SR Understand SR Backfill Legend: Bentonite Cament Sind Sind Backfill Wit Understand SR Sind Backfill Legend: Backfill Legend: MATERIAL DESCRIPTION Sind													_				
Image: Second S		Sample T					Shelby Tube (T)	Snlit	Snoon (_		Cor	a (C)			
Linitian in the second state plasticity Backfill Legend: Bentonite Cement Drill Cuttings Filter Pack Sand Sough Built Unit Wit Drill Cuttings Sinup Sand Colspan="2">Colspan="2">Colspan="2" Sand Colspan="2" Sand Sough Undrained Sh Strength (Mc 20 4 0 6 0 8 0 100 0 2 0 4 0 4 0 4 0 4 4 4 4 4 4 4 4 4 4					1443			<u> </u>	-								
backin Legend: bentonine Certenin Control of the c		Particle S	ze Legend		Fines	-							obles				
bit of the transmitter of		Backfill Le	egend:		Bentonite	Ce	ment	Drill Cutting	gs		··••,		Æ				
Image: Second	Elevation	(m) Depth (m)	Standpipe				Sample Type Sample Number	RQD (%)	(N) LdS	(kN/m ³) 18 19 Particle Size (40 60 PL MC	20 21 %) 80 100 LL	○ Field Vane ○					
 - moist, stiff - intermediate plasticity SILT (ALLUVIAL) - trace clay to clayey, trace fine and medium grained sand, trace organics (roots) - brown - moist, very soft - low to intermediate plasticity - sandy and wet below 5.0 m 	225				race silt inclusion - brown - moist, fro - high plas CLAY (ALLUVI/ race organics (ons (<20mm) ozen to 1.1m, s sticity AL) - silty, some	tiff when thawed	-	G30 G31			• · · · · · · · · · · · · · · · · · · ·					
	+ 224	<u>1.6</u> - 3 - 1			- moist, st - intermed	liate plasticity	o clayey, trace fing	e and				•					
		4	NONONON NONONON	ACTRONOLA NONCARCIN	- brown - moist, ve	ery soft					F				•		
		5	NOVOVOVOVO	KAKAKAKAK MANAKAKA	sandy and wet	below 5.0 m			XSB36	5A		•					
219.0 -8 - - SB38A -9 - - - - - -0 - - - - - -10 - - - - - - -10 - - - - - - - -11 - - - - - - - - -11 -		- 6 -		TYONOTYONOUS	soft below 6.6	m			SB37 SB37	A B							
SAND (ALLOVIAL) - slity, trace to some clay to 10.7m - brown - wet, loose - no plasticity - poorly graded, fine and medium grained sand - no clay, some silt below 10.7 m SB39 - no clay, some silt below 10.7 m	219	I 1						0.7				•					
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		9	Kanakanan Kanakanan		- brown - wet, loos - no plasti	se city	-		SB38	B							
		-10-	akanana akanana		no clay, some	silt below 10.7	m										
F F						Deuteur	A Dur Malaan T	orroiro	SB4								

		EC					er				B	ulk Un (kN/m ³	it Wt			rained ength (
5	٩	Soil Symbol	Standpipe	ipe		Sample Type	Sample Number	(%	î	16	_	(kN/m [°] 18 1) 21	-	Test Ty	pe	
(m)	Depth (m)	Syn	dpu	Standpipe	MATERIAL DESCRIPTION	ble.	e N	RQD (%)	SPT (N)	0		cle Siz 10 6		0 100	 ∳ P	Torvan ocket F	ie ∆ Pen. Φ	
		Soil	Sta	Sta		am	Idm	8	р В		PL	MC	LL	_	F	⊠ Qu I ield Va	\bowtie	
						<i>w</i>	Sa			0	20 4	40 6	50 8C	0 100 0	20	40 6		0 10
15.2	-				CLAY (ALLUVIAL) - silty, some fine to medium grained sand,													
14.6		\mathbb{A}			trace organics (roots) - brown		T41				•				- 4			
	-13-				- moist, stiff	Y	SB42A									_		
	-				- intermediate plasticity													
					SAND (TILL) - trace silt, trace clay - brown	X	SB42B				O I							
	- 				- wet, loose													
					 no to low plasticity poorly graded, fine and medium grained sand 													
	- 15-			R S	- dense below 14.6 m							* * *						
						ð	SB43			-pit		•••••		· · · ·				
							SS44		29		•							
	-16-				- trace till inclusions (<20mm) below 15.7 m	V												
				1005			SS45B			•								
				1000		Å	SS45A		50							_		
	-]			- boulder at 16.7 m													
	- ''		RR															
				603												_		
~~~~							CB56											
09.2	- 18-				DOLOMITE (BEDROCK)													
					<ul> <li>beige, vertical and horizontal, rough undulating</li> </ul>	_												
	- 19-				fractures, slightly altered, clay infilling													
		<b>↓</b>					CB57	75										
				29			CDJI	15										
	-20-																491	100
	20	<u></u>	200															
					- 0.1 m clay (rock flour) seams between 20.7 m and 20.8 m		CB58	30										
	-21-			683														
			1993	AC S														
	-22-			608	- 0.2 m clay (rock flour) seams between 21.6 and 21.8 m - yellowish fractured limestone between 21.8 to 24.3 m													
			685	603			0050	_										
			665				CB59	0								-		
04.2	-23-		FOS															
04.2		臣			MUDSTONE (BEDROCK)													
					- beige to brown, layered to varved, highly fractured with clay infill.													
	-24-						CB60	17										
03.0	T																	
		┋┷╌╴			DOLOMITIC MUDSTONE (BEDROCK)											_		
	-25-			<b>K</b>	- mottled light brown to grey, minor rough undulating sub vertical fractures.													
	Ē																	
							CB61	91										
	26-		<u>ky</u>	R S														
			<u>k</u>			-												
			₿\$\$	RSA														
		: Step			Reviewed By: Nelson Ferreira									n Ferre				



Elevation (m)	Depth (m)	Soil Symbol	Standpipe	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	17 Part 20 PL	3ulk Ur (kN/m 18 1 icle Siz 40 6 MC 40 6	3) ze (%) 50 8 LL	0 100	Str 	rained S ength (k Test Typ Torvane ocket Pe ⊠ Qu ⊠ field Van 40 60	Pa) ≙ ∆ n. Ф e ⊖	0 100
	-27  -28-				- chalk nodules at 26.8 m		CB62	96	_								
198.1	-29-				DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a		CB63	62	_								
	-30- 				dolomitic limestone matrix (beige), vuggy.		CB64	73	-							312 218	
	-32-						CB65	35	_								
	-33-				- 0.3 m thick highly fractured layer at 33.5 m		CB66	31									
	-34- 				- fractures decreasing below 34.7 m		CB67	74	-							331	00
	- 36 -						CB68	94	-								
190.5			<u>KUU</u> A		END OF TEST HOLE At 36.9 m in DOLOMITIC LIMESTONE (BEDROCK) Notes: 1) Power auger refusal at 16.9 m depth. 2) Seepage observed below 5.3 m 3) Water level at 1.5 m depth immediately after dilling prior to coring. 4) Test hole drilled using solid stem auger up to 4.6 m then switched to hollow stem auger. At power auger refusal, switched to HQ coring.		<u> </u>		<u> </u>			1			1 1		



Clien	t:	Ass	ociate	d Engine	ering				Project N	lumbe	er:	0115	004 0	0						
Proje	ct Nan	ne: Det	ailed [	Design No	orth Kildonar	n Feedermain			Location	:		UTM	N-55	34987.2	1, E-636	6455.82				
Contr	actor:	Pac	dock	Drilling Lt	d.				Ground E	Elevat	ion:	227.1	19 m							
Nethe	od:	Acke	er SS3	Track Mou	nt (see notes f	or drilling method)			Date Dril	led:		6 No	vembe	r 2013						
	Sampl	е Туре:			Grab (G)	)	Shelby T	ube (T)	Split	Spool	n (SS	S) 🕨	<b>S</b> p	lit Barre	el (SB)	C	ore (C	;)		
	Particle	e Size L	egend	: 88	Fines	Clay		Silt	•••••	Sand		•	Gra	vel	ल्ने c	obbles		Bou	Iders	
	Backfil	II Legen	d:		Bentonite	e 🔀 Ce	ment		Drill Cutting	ns 🔯		Filter F	ack		Grout		1200F	Sloug	ıh	
												Sand		· · · · · ·	Bulk Unit	t Wt		Undrai	ned Shea	
5	_	lođ	be							Sample Type	Sample Number	(%	7	16 17	(kN/m ³ ) 18 19				gth (kPa t Type	)
Elevation (m)	Depth (m)	Soil Symbol	Standpipe		ľ	MATERIAL DES	CRIPTION	N		ple	e Nr	RQD (%)	SPT (N)	Fa 0 20	rticle Size 40 60		,		rvane ∆ ket Pen.	
Ш		Soil	Sta							Sam	Idme	8	L R	PL	1 1	LL	-	$\boxtimes$	Qu⊠ d Vane (	
										0,	ő			0 20	40 60	80 100	0 2			80 1
						silty, some grave and rootlets)	el, trace fir	ne sand, t	race to											
				- da	rk brown bist, very stif						G46			•						_
	- 1 -				h plasticity	1														
225.7											G47			•	)					>
				CLAY (LA	ACUSTRINE	<ol> <li>silty to 2.4m, and rootlets), tra</li> </ol>	some gra	avel, trace on	e fine sand,		C40							• ^		
	- 2 -			- dai	rk brown, m	oist, soft to firm,	high plas	ticity			G48 SB01				•		•		<u>`</u>	-
				- grey bel	ow 2.4 m						B02							^		_
	- 3 -			- trace sil	t inclusions	(<15mm) and so	oft below 2	2.7 m			G49						T I	<b>ê</b>		
											тоз							•		
				<b>C</b>	1:55 har - 1 -		h . l 0 7				100							-		-
	4 -			- tirm to s	stiff, trace to	some oxidation	Delow 3.7	m			SB04				•			• 4		_
	¥ :																			
										Å	B05				•			• △		
	- 5 -										B06						-			-
				- trace co	arse sand b	elow 5.8 m					6B07				•		4	• •		
	6-					CIOW 5.0 III														
											T08							•4	3	-
	- 7 -										SB09									
					aal ( 205 mar	••) h alau 70 m									Ť					
				- trace gr	avel (<25m	n) below 7.3 m					SB10				•		•	$\bigtriangleup$		-
	8 -			- trace to	some silt in	clusions (<15mr	n) below 7	7.9 m										<b>.</b> .		_
										Å	SB11				•			♦△		
										<b>X</b> s	SB12				•		•			
	- 9 -										_				-					+
											T13				•			• 🛛		_
	-10-									V.								Ļ		
										Å	SB14			•	1		•			
				- trace till	inclusions (	<75mm) below	10.4 m			Ys	SB15				•			• •		-
	-11-										-									_
										<b>X</b> s	B16				•		<			
	E																			
	+ -										SB17						<u> </u>	4		



2 of 2

GE	Ul	EC	11	ICAL							Bulk U	oit \A/t						
Elevation (m)	Depth (m)	Soil Symbol	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)		17 Pai 20 PL	(kN/m 18 ticle Si	1 ³ ) 19 ze (%) 60 LI	20 21 ) 80 100 -		Stre <u>T</u> ∉ △ T ● Poo ○ Fie	ained S ngth (k est Typ orvane cket Pe d Qu eld Var 0 60	Pa) ≙ ∩∆ n. Ф e ⊖	100
					X	SB18									4 ک	<u> </u>		
	-13-				X	SB19					•			۰		Δ		
	 - 				X	SB20					•	)		٥		·		
				- trace to some till inclusions below 14.0 m	X	SB21					•			٥	Δ			
212.2 211.8	1 13			SILT (TILL) - trace clay, trace gravel (<25mm), trace sand - light brown, moist, loose, low plasticity		SB22			•									
211.3	 - 			CLAY - silty, trace gravel - grey, moist, soft to firm, high plasticity	┘ĬĂ ₋∕I▼	SS23					•							
				SILT (TILL) - trace clay, trace gravel (<25mm), trace sand (poorly graded) - light brown, moist, loose, low plasticity		SB24 SB25			•									
210.1	- 17 -			- dense below 16.4 m DOLOMITE (BEDROCK) - beige, vertical and horizontal, rough undulating fractures, slightly altered, clay infilling		CB26	86	-										
	- 19-  - 20-					CB27	100	_										
205.5	-21-					CB28	100											
205.5	F	7		<ul> <li>END OF TEST HOLE at 21.6 m in DOLOMITE (BEDROCK) Notes:</li> <li>1) Power auger refusal at 16.7 m.</li> <li>2) No seepage or sloughing observed.</li> <li>3) Water level at 4.2 m depth immediately after drilling prior to coring.</li> <li>4) Test hole drilled using solid stem augers to 16.7 m then drill method switched to HQ coring.</li> </ul>														

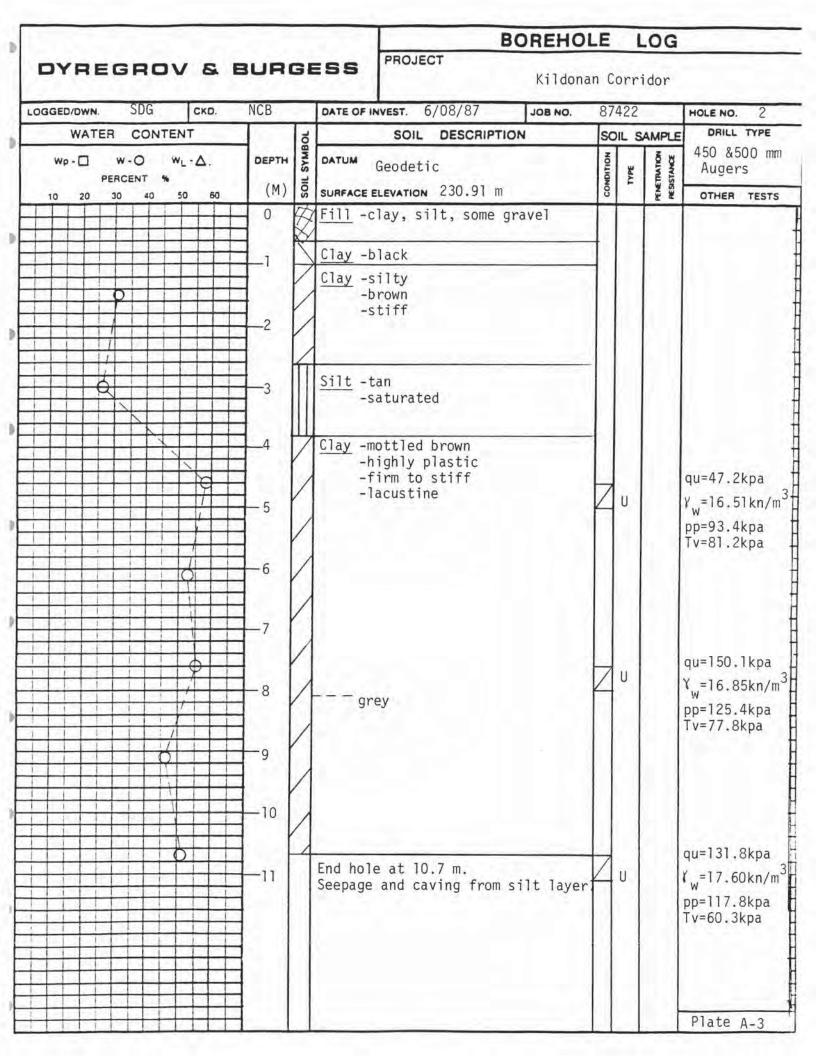


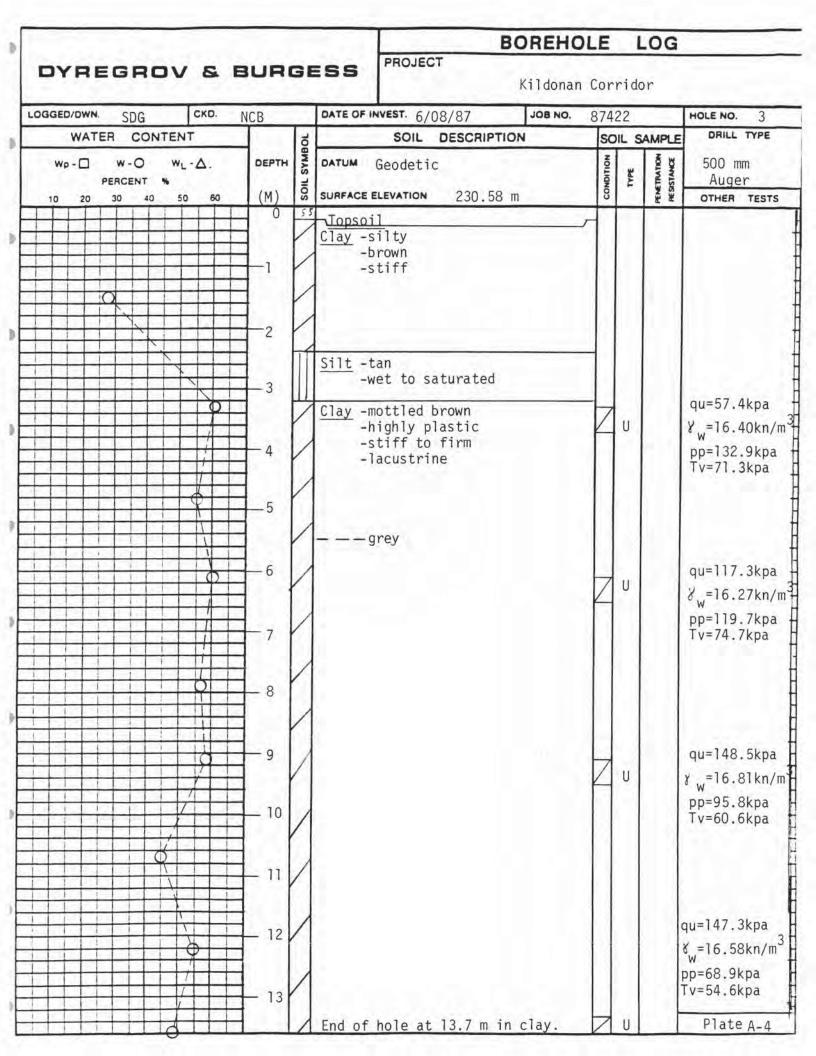
	IEU I	ECHI	IICAL															
c	lient:	Associa	ted Engineering			Project I	Numb	er:	0115	004 0	0							
P	roject Nan	ne: Detailed	l Design North Kildonan	Feedermain		Locatior	<b>1</b> :		UTM	N-55	3497	9.78, E-	63646	5.14				
c	ontractor:	Paddoc	k Drilling Ltd.			Ground	Eleva	tion:	226.2	26 m								
N	lethod:	CME-850	Track Mount (see notes for	drilling method)		Date Dri	lled:		15 No	ovemb	er 20	13						
F	Sampl	е Туре:	Grab (G)	Shel	by Tube (T)	Split	t Spoo	on (SS	5)	< Sp	olit Ba	arrel (SE	3)	Co	ore (C)	)		
F	Particl	e Size Leger		Clay	Silt		Sand		•	-		67				Bould	ders	
F	Backfi	I Legend:	Bentonite	N		Drill Cutting	as 🛛		Filter P Sand			Gr				Slough	<u>ו</u>	
F									Sanu			Bulk	Unit Wt	-	ι ι	Jndraine	ed Shea	
Ę	5 _	Soil Symbol Standpipe					Sample Type	Sample Number	(%	(Z	16 1			20 21		Strengt Test	<u> </u>	1
ito	Depth (m) (m) (m) (m)	soil Symbo Standpipe	M	ATERIAL DESCRIP	TION		ple	e N	RQD (%)	SPT (I	0 2	Particle 20 40		) 80 100		△ Torv Pocke	vane ∆ et Pen. ∎	
Ī		Soil					Sam	Idme	RO	Ч		PL N					)u 🖂	
							0,	ŝ			0 2	20 40	60	80 100	0 20			80 10
	Ē		- overburden soils not - drilling advanced to p	logged ower auger refusal t	hen drillina m	nethod												
		• • •	switched to HQ coring														_	
	- 1 -																	
	Ē		•															
	[																	
	2 -																	_
	Ē		▼. 															
4																		
15/1/	- 3 -																_	
105																		
CAL.0																		
CHN	- 4 -																_	
E O T E																		
H B B B B B B B B B B B B B B B B B B B	- 5 -		•															
H.																		
S.GPJ			•															_
000	6 -		•															
RMA			• •															
EED	- 7 -		4															
AN F	Ē -																	
Ind																		
Η	- 8 -		•															
NOR																		_
SIGN	ŧ,	- I	•															
	- 9 -		4															
AILEI			•														_	_
DE	- 10 -																	
04 00																		
115 U																		
0 0	-11-	- I.a. I.																_
SUB-SURFACE LOG 0115 004 00 DETAILED DESIGN NORTH KILDONAN FEEDERMAIN - LOGS.GPJ TREK GEOTECHNICAL.GDT 15/1/14			4															
JRFA	ŧ		· •															
ר B-Sר	ogged Byg	Martial La	moine	Reviewed Pu	" Nelson Fr	arreira				Projec	t En	ainear	Nolo		rreiro			
ՇĽ	ogged By:	Martial Le		Reviewed By	. INCISON FE	u ella			-	Fiolec	γ ⊏ni	gineer:	iveis	JII Fer	rena			



					ICAL	_				1		Bulk	Init V	Vt	1	Linda	ained Sł	oor
Elevation (m)	Depth (m)	Soil Symbol	Standpipe		MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)		17 Pa	(kN/ 18 article \$	m³) 19 Size ('	20 21 %)	1	Stre	ngth (kł <u>est Type</u> forvane	Pa) ⊵ ∆
Elev (r	De	Soil S	Stan		WATERIAE DESCRIPTION	Sampl	Sample	RQL	LdS	0	20 PL 20	40 40	)	80 100 LL 80 100	1	∳ Po [2 ○ Fi	cket Per I Qu ⊠ eld Van 0 60	n. • e ()
210.1 210.0 201.9	-17- -18- -19- -20- -21- -22- -23- -23-			□	SILT (TILL) - trace clay, trace sand, trace gravel 		<u>ў</u> <u>SS69</u> <u>СВ70</u> СВ71 СВ72 СВ73 СВ74 СВ75 СВ75	0 38 73 95 83 98 98										
	-26-						CB77	75										
	od By:	Mar	tial Le	emc	bine Reviewed By: Nelson Ferreira	1			Proie	ct E	naiı	neer:	Ne	lson Fe	rreir	a	I.	

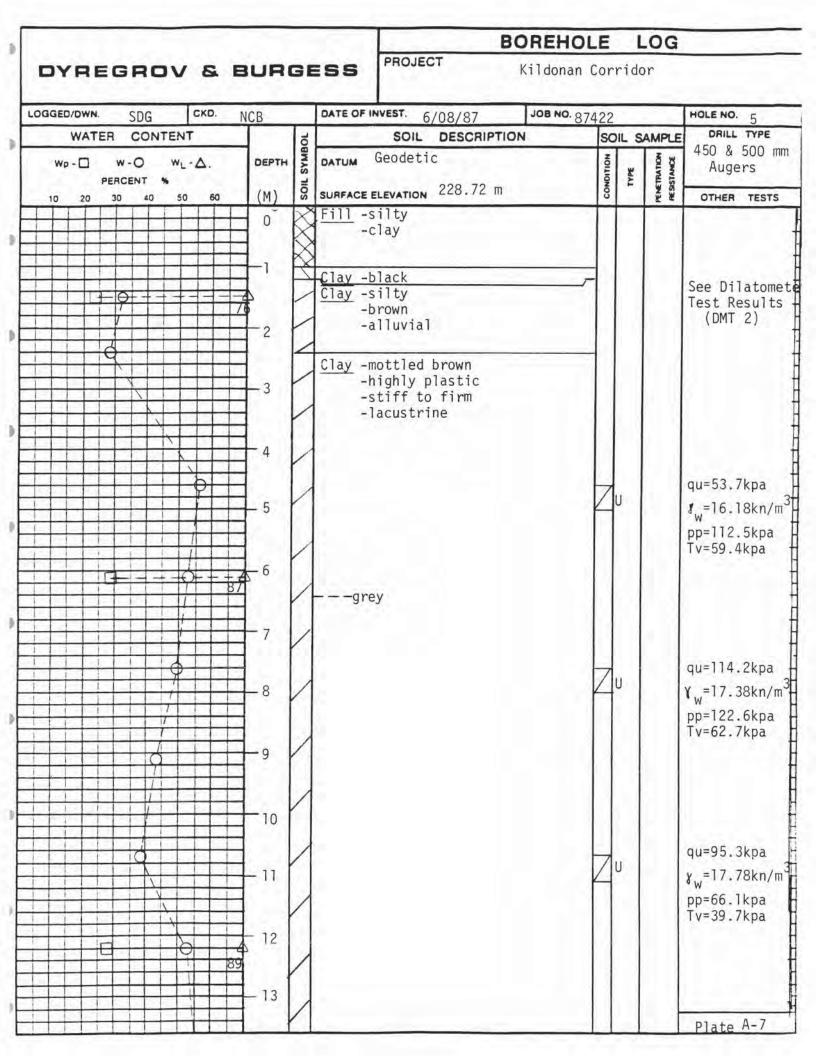



Elevation (m)	Depth (m)	Soil Symbol	Standpipe	MATERIAL DESCRIPTION	Sample Type	Sample Number	RQD (%)	SPT (N)	16 0 0	17 Par 20 PL	Bulk Ur (kN/m 18 ticle Siz 40 MC 40	19 2 2e (%) 60 8 LL	30 100	Sti 	Irained S rength ( Test Typ Torvan bocket P ⊠ Qu D Field Va 40 6	kPa) 2 <u>e</u> e ∆ en. Ф ⊲ ne ⊖	1
198.8	-27-			DOLOMITIC MUDSTONE (BEDROCK) - mottled light brown to grey, light brown mottles are soft calcareous mudstone, grey mottles are hard dolomite, trace chert nodules, vuggy, rough undulating sub vertical fractures 0.1 m thick clay (rock flour) seam at 28.7 m		CB78	69	-									
	-29-  - 30-					CB79	92									119	900
195.8	-31-			DOLOMITIC LIMESTONE (BEDROCK) - beige to grey mottled, some chert nodules (grey) in a dolomitic limestone matrix (beige), vuggy, minor, very rough, angular, subhorizonal fracturing.		CB80	100	-									
	- 32-					CB81	100	-									
	-33-					CB82	99										
191.2	-34-					CB83	85										
				END OF TEST HOLE At 35.1 m in DOLOMITIC LIMESTONE (BEDROCK) Notes: 1) Power auger refusal at 16.2 m. 2) No seepage or sloughing observed. 3) Water level at 3.7 m depth immediately after dilling prior to coring 4) Test hole drilled using solid stem augers to 16.2 m then drilling method switched to HQ coring.	J.												




Appendix B

Test Hole Logs (By Others)


DYREGROV & E	URG	PROJECT	DLE LOG	
000	Non			
GGED/DWN. SDG CKD.	NCB	DATE OF INVEST. 6/08/87 JOB NO.	87422	HOLE NO. ]
WATER CONTENT	DEPTH S	Geodetic	CONDITION TYPE REVEITANTION	450 & 500 m Augers
10 20 30 40 50 60	solt (M)	SURFACE ELEVATION 230.63 m	CON CON	OTHER TESTS
	OX	- 1 I I I		
	1 E	Clay -black		
	LIK	Clay -silty -brown		
		-stiff		
φ		-alluvial		
	-2 4			
- P - I - I - I - I - I - I - I - I - I		<u>Silt</u> -tan		
	1 11	-wet to saturated -firm		
		-1111		
	3			
	4 1	Clay -mottled brown		
	TV	-highly plastic		
		-stiff -lacustrine		
		- lacus el lite		
	-5			
				11/ 2000
	6			
				qu=109.7kpa
			4 U	∛ _w =16.48kn/
				pp=146.0kpa Tv=84.7kpa
	$\Gamma'   /$			Tv=84.7kpa
		and the second		
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	-8	End hole at 7.6 m.		
	- 0	Seepage and caving from 2.4 to		
		2.7 m.		
				Plate A-2







Kildonan Corridor         Kildonan Corridor <t< th=""></t<>
WATER CONTENT       DEPTH       SOIL DESCRIPTION       SOIL SAMPLE       DATUM       Geodetic         vertex       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
-       w-O       w_L^A.       DEPTH       W       Geodetic       450 & 500 mm         20       30       40       50       50       (M)       SUPFACE ELEVATION 230.64 m       U       400 e83.2kpa         20       30       40       50       50       (M)       SUPFACE ELEVATION 230.64 m       U       400 e83.2kpa         14       -14       -14       -14       -14       -16.04kn/m       pp=94.2kpa         15       -15       -16       -116       -12       -12       -12       -12         17       -16       -17       -16       -17       -16       -17       -12       -100 est to 19.5 m       -100 est to 19.5 m         19       -17       -100 fole at 20.4 m.       -5mooth auger refusal       -5mooth auger refusal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
14       Clay -grey -highly plastic -lacustrine       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u       u
-Water Inflow From 20.4 m -Water level stabilized at 9.4 m in about 15 minutes



		Kildonan (		
OGGED/DWN. SDG CKD. WATER CONTENT	NCB	DATE OF INVEST. 6/08/87 JOB NO.	87422	DRILL TYPE
WP-□ W-O WL-△. PERCENT %	DEPTH (M)		CONDITION TYPE FRETRATION RESISTANCE	150 0 500
		<u>Clay</u> (cont'd)		qu=118.4kpa
	14 15 16 17 18 19			Y _W =16.51kn/m pp=103.4kpa Tv=49.3kpa

DYREGROV & BURGESS

ъ

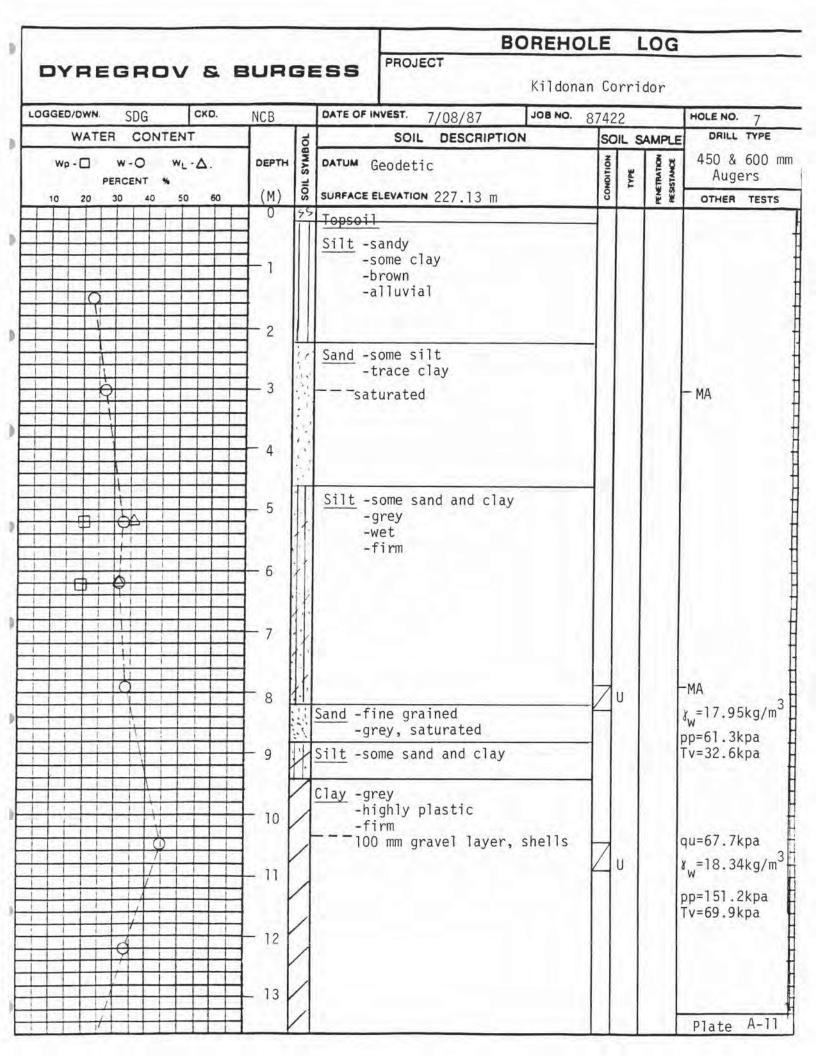
#### BOREHOLE LOG

Kildonan Corridor

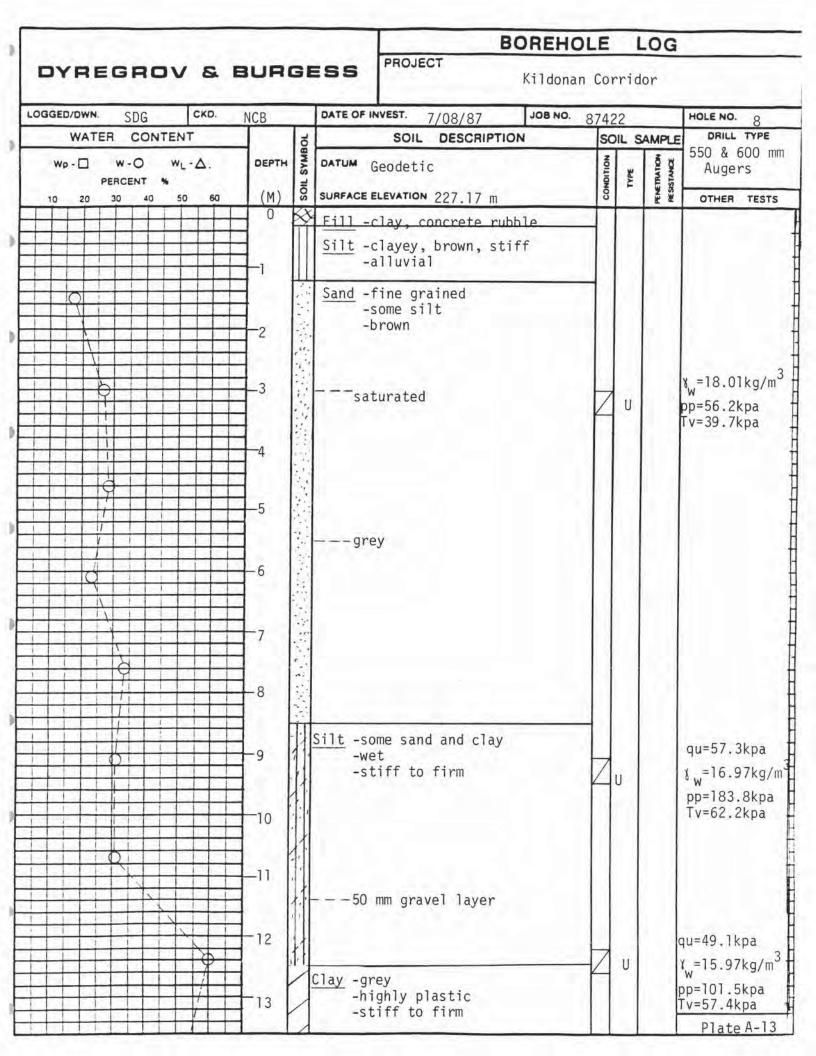
LOGGED/DWN		SE		-	KD.	N	СВ	1		8742			HOLE NO. 6
WP - C		v-0		WL-2	Δ.		DEPTH	SYMBOL	DATUM Geodetic	-	IL S	AMPLE	Hollowstem 550 & 600 mm Augers
10 20	PER 30			50	60		(M)	SOIL	SURFACE ELEVATION 227.47 m	CONDITION	TYI	PENETRATION	OTHER TESTS
				50			(M) 0 1 2 3 4 5		<u>Sumface Elevation</u> 227.47 m <u>Clay</u> -silty -some sand -alluvial -stiff to 1.2 m -soft from 1.2 to 3.3 m <u>Sand</u> -little to some silt -trace to some clay -fine to medium grained very dense, 5.2 - 6.4 m	Z	U		отнев тезтз See dilatome test results to 15.2 m depth (DMT 1 Kw=17.90kg/m pp=114.9kpa
							-6 -7		————medium grained, grey, saturate	ž	IJ		MA pp=35.9kpa
							- 8		<u>Silt</u> -some sand -some to little clay -firm to stiff	Z	U		MA ¥ _W =18.00 kg/ pp=67.0kpa Tv=31.6kpa w=17.71kg/m
							- 10 - 11				U		pp=88.6kpa Tv=15.8kpa -MA Y _W = 14.97kg/n pp=52.7kpa
			5				- 12	11	Clay -silty, very stiff, alluvial End of hole at 12.5 m Standpipe piezometers SP 1 and	Z	U		op=148.4kpa [v=67.0kpa
	11	++	+		-	H			SP 2 installed				Plate A-9

PROJECT

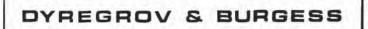
DYREGROV & BURGES	35
-------------------	----


Ð.

#### BOREHOLE LOG


Kildonan Corridor

OGGED/DWN.	SDG	CKD.	ICB	DATE OF INVEST. 10/08/87 JOB NO.	87422	HOLE NO. 6
WATE	R CONTE	NT	ō		SOIL SAMPLE	DRILL TYPE
1	W-O		DEPTH NO	DATUM Geodetic	CONDITION TYPE FEMETRATION RESISTANCE	Hollowstem 550 & 600 m Augers
10 20	30 40	50 60	S		S S S S S S S S S S S S S S S S S S S	OTHER TESTS
				SP 1		
				Tip at 12.2 m Sand to 11.6 m		
		++++		Bentonite to 10.4 m		
				230 mm Ø augers		
				SP 2		
				Tip at 6.1 m		
				Sand at 5.6 m		
				Bentonite to 4.6 m		
				230 mm Ø augers Pipe ID – 19 mm		
				ripe to to min		
						Plate A-10


PROJECT

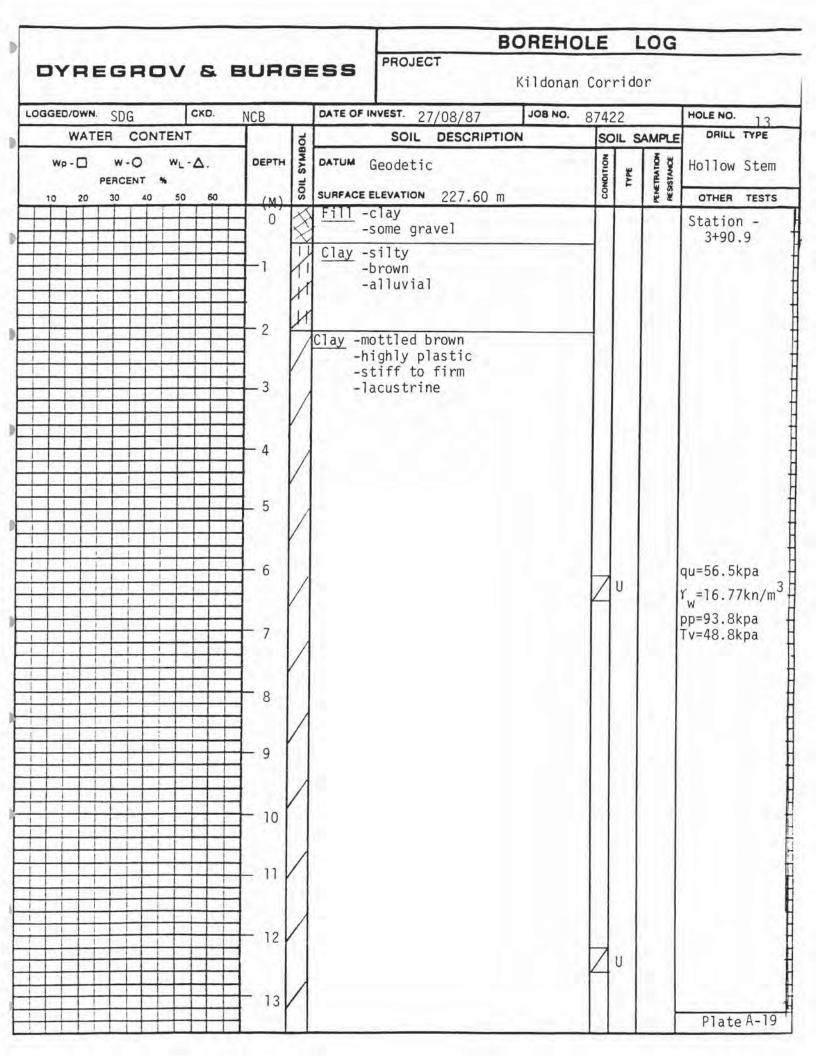


DYREGROV & E	BURGI	PROJECT	Kildonan	-		0.55	
GGED/DWN. SDG CKD.	NCB	DATE OF INVEST. 7/08/87	JOB NO.	874	22		HOLE NO. 7
WATER CONTENT		SOIL DESCRIPT	ION			AMPLE	DRILL TYPE
WP- W-O WL-A.	DEPTH (M)	DATUM Geodetic SURFACE ELEVATION 227.13		CONDITION	TYPE	PENETRATION RESISTANCE	550 &600 mm Augers отнея теsтs
	14	— — —Clay & Glacial Til		1			official rests
	15 3						
	E E	Silt (Glacial Till)		-			
	16	-wet, loose, clayey					
		End of hole at 16.2 m.					
	17	-Smooth auger refusal -Water seepage 20 minut	es after				
		completion of drilling -600 mm casing to 10 m					
	1	-Possible bedrock at 16	.2 m				
					- 3		
	1						
	1						
	1						
	1						
	1						
	1						Plate A-12



DYRE	GRO	VA	S F	308	GF	DROJECT	OREHOL		20.0			-
		Ска			_		Kildonan C				Harris	
LOGGED/DWN.	SDG		J.	NCB	1	DATE OF INVEST. 7/08/87		874			HOLE NO.	0
	R CONT			-	1BOL	SOIL DESCRIPTIO	N	1 1	L SA	AMPLE	이 개통을 즐기는	
Wp - 🗆 P	W-O			DEPTH				CONDITION	TYPE	PENETRATION	550 & Auge	
10 20	30 40	50	60	(M)	SOI	SURFACE ELEVATION 227.17 m		co		RES	OTHER	
		9	H	-14	P	<u>Clay</u> (cont'd)		T			-	
	111	171	Ħ	-14	1			11				
	+++	1	#	F	1							
		71	#	-15	r.	— — —gravelly		11				
		>++	H	1 10	K							
	.FT	T	T	-	1							
Hart		$\pm$	T	110	124	Silt (Glacial Till)		11				
		+	H	16	山	Silt (Glacial Till) -sandy, gravelly						
+	++++		F	7	1	-some clay						
	++++	11	#	17	43	-tan						
		++	₽	1	1-1	-seepage from 16.5 m						
+	++++	Ŧ	HT-	4	Q.							
			Ħ	-18	$\square$	End of hole at 17.7 m						
	++++		H	10		-Rough auger refusal at 1	7.7 m					
+	+ + + + +	T	F	-		-Water level at 7.2 m on of drilling	completion	11				
			H			-600 mm casing to 4.6 bel	ow grade					
		++	H	4			Jude		1			
HII	HI		F	-								
			H	1								
		+	H		63							
	111		F	4 1	y 3							
	111		Ħ	1 1								
		1-	1	1								
		+	F	1 1								
		11	H	1 1								
			H									
			H	1 1								
			H	1 1								
				1 1								
	$+ \Pi$	+	F	1								
	+++	++	F	1								
				1								
	+   T	$+\Box$	F									
	+++	111	-									
		+++										
	+++	$+ \square$	F									
		+++						1				
			1	1								
	+++	HT.	F					1				
		111		T I						F	Plate	




b

#### BOREHOLE LOG

PROJECT

Kildonan Corridor

OGGED/DWN		SDG	-	KD.	NCB	-	DATE OF INVEST. 27/08/87 JOB NO.	8742		5.3	HOLE NO. 12
WAT	ER C	ONTE	NT		-	OL	SOIL DESCRIPTION	SC	IL S	AMPLE	DRILL TYPE
Wp - 🗆	W-(		wL - 4	۵.	DEPTH	0	Geodetic	CONDITION	TYPE	PENETRATION RESISTANCE	Hollow Stem
10 20	30	40	50	60	(M)	SOIL	SURFACE ELEVATION 226.74 M	CON	-	PENE	OTHER TESTS
					0	X	Fill -clay -some gravel				<u>P1</u> Pneumatic
					1	M	Clay -silty -brown				piezometer tip @ 7.8m
			+	++	-	In	-stiff			1.2	sand to 7.1
		++	11		7	11	-alluvial -medium to highly plastic			11	bent. to6.1m
			$\mp$	+	2	KI	incaram to mighty prastre				
				+	7	K					
			++	+	-3	1		H	U		qu=46.4kpa
					7	12		4	0		∛ _w =18.00kn/m
					E.	[1]					pp=97.0kpa Tv=27.8kpa
				++	4	H					
				+		11				-	
			#		5	H	— — —grey				
			++		7	11					
				+	- 6	11					8 _w =17.37kn/m
					F	14		A	U		pp=59.8kpa
						11					
				++		H					
		++-		++	1	11					
					8	n					
		1		+	1	14					
		11			1 9 .	11					qu=67.4kpa
				+	1	1	Clay -mottled brown to grey	4	J		∛ _w =19.95kn/m
							-highly plastic -lacustrine				pp=143.6kpa
					10						
						1					
					- 11	1					
					1						
					12	1					au=51 2kpa
				+		1		7	J		qu=51.2kpa % =17.60kn/m
		1	$\left  \right $	$\square$	1 12	4		-11			pp=87.8kpa
					13		End of hole at 12.8 m. Install pneumatic piezometer			1	Tv=58.4kpa
			11	11	1		The second s				Plate A-18



LOGGED/DWN.	SDG		NCB	_		3742			HOLE NO. 13
	CONTEN	-	DEPTH	SYMBOL	SOIL DESCRIPTION Geodetic	1	T	AMPLE	DRILL TYPE Hollow Stem
	RCENT %	0 60	(M)	SOIL S	FACE ELEVATION 227.60 m	CONDITION	TYPE	PENETRATION RESISTANCE	OTHER TESTS
			14 15 16 17 18 19 20	1 Adamant	Ay (cont'd) It ( <u>Glacial Till</u> ) -sandy and gravelly -bouldery d of hole at 18.6 in glacial til ckfill with sand to 14.9. Place eumatic piezometer @ 14.9 (P2) ad to 14.2 m htonite to 13.1 m t pneumatic piezometer (P3) with 0 @ 9.1 m. Sand to 8.5 m. htonite to 7.5 m.				

#### DYREGROV & BURGESS

#### BOREHOLE LOG

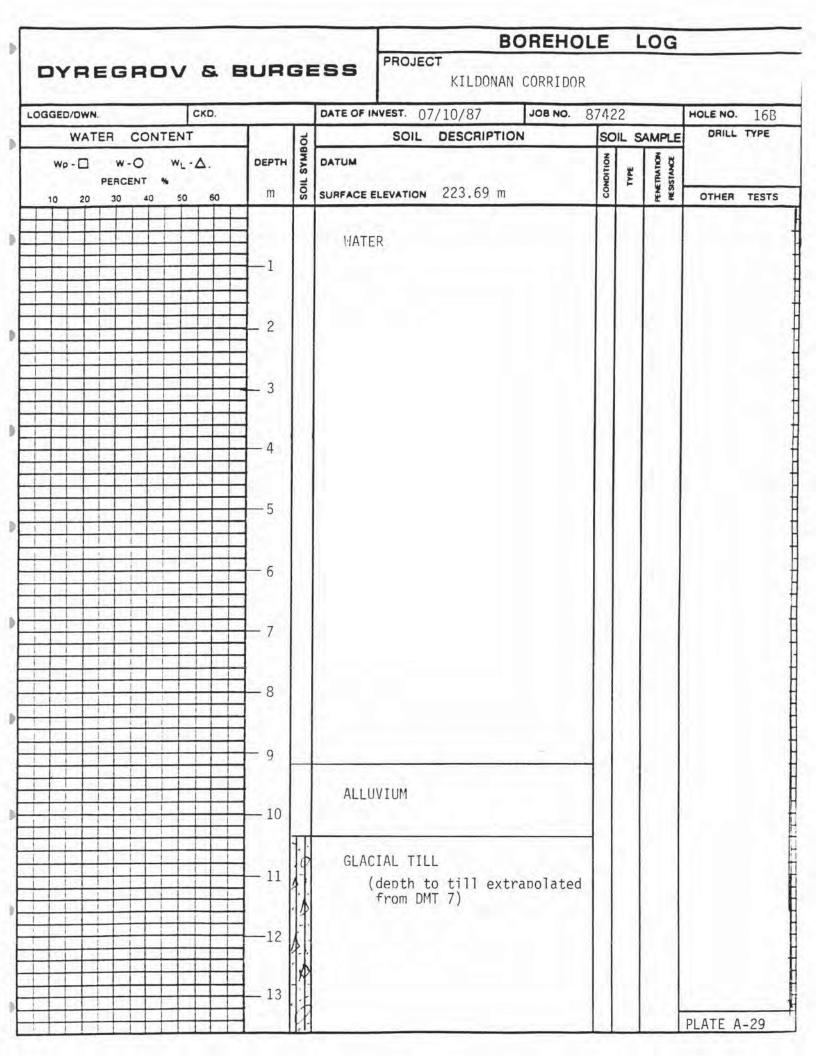
PROJECT

Kildonan Corridor

DGGED/DWN	500	CKD.	NCB	-	DATE OF INVEST. 18/09/87		742			HOLE NO.	14
WAT	ER CONTE	NT	-	SOIL SYMBOL	SOIL DESCRIPTION		-	LSA	MPLE	DRILL B-2	
Wp - 🗖		L-Δ.	DEPTH	SYM	DATUM Geodetic		CONDITION		PENETRATION		
	PERCENT %		1	F			QNO	TYPE	SIST	75 mm E	
10 20	30 40	50 60	(M)	ŝ	SURFACE ELEVATION 223.64		ŏ			OTHER	TESTS
			0		Water				1.51		
			11								
			<b>T</b> ' )								
			1	10					1.1		
			-								
			2	113							
			1								
			- 3								
			1								
			1								
			4								
			4								
				11							
			- 5	0.6							
			- 6								
+											
			- 7								
				-	0 1 1 0 10					2. 2.	
			- 8		Overburden Soils					For DMT see DMT	rest
										see DMT	5
				U	01	-					
			- 9	1	Glacial Till						
			9								
				1							
			_10								
			-10								
			r f	1.1							
			ľ								
			-11	A							
			4								
			-12								
				1							
			1								
			-13	411							
				14					L		
			-	4	_imestone Bedrock					Plate	A-21

DYREGROV & B	URGE	PROJECT	OLE LOG	
DGGED/DWN. NCB CKD.	NCB	DATE OF INVEST. 18/09/87 JOB NO.	87422	HOLE NO. 14
WATER CONTENT		SOIL DESCRIPTION	SOIL SAMPL	E DRILL TYPE
WP-D W-O WL-A. PERCENT %	DEPTH I	DATUM Geodetic	CONDITION TYPE FENETRATION	
10 20 30 40 50 60	(M) 🕉	SURFACE ELEVATION 223.64 m	THE CO	OTHER TESTS
		Sound Rock	111	Rec 100%
	- 15	Sound Rock 25 mm clay seam at 15.2 m		Rec 91% RQD -80%
	- 16			
	_ 17 U	Sound Rock 25 mm clay seam at 16.7 m		REC94% RQD -75%
		Sound Rock		Rec100%
		No clay seams		RQD - 95%
	- 19	End hole at 19.1 m. Rock surface estimated at Elev 210.38 m. Top 150 mm unsound.		
				Plate A-22

.00	GED	DWN	N.	-		T	CKD		-		DATE OF IN	VEST. 24/09/87	JOB NO.	745	2		HOLE NO.	10
-		-	-	C	ON	TENT		-	1	Tz		SOIL DESCRIPTIC				AMPLE		
		- 🗆	PE	W - (	C T	w	۰Δ.		DEPTI	SOIL SYMBOL	DATUM		0	CONDITION	-	PENETRATION RESISTANCE		
T	10	20	3	0	40	50	6	0	m	0	SURFACE EL	EVATION 223.67 m		0	-	<u> </u>	OTHER	TESTS
-	+		-		-				-		WATE	R						
-	+ +	-	+	-	-		+		-1		2.002							
1	$\square$	-	-	_	-	-	$\square$											
1		-	1					-	1							10.1		
+			-	-	1		+	1	-2		100							
-		+	-	-			$\square$		T ^c									
1							$\mp$		1									
-		+			-			-	- 3									
-	+	+		+	+		+	-	3									
	11	-		-		-	T	-	1									
		-				1	$\mp$	+	4									
-	-	-		-		-	$\pm \pm$	+										
F		-		-			H	-										
1		-		-		-	$\mp$	-	- 5									
1		-	+					-										
		-	1	-			+											
		-				1	=	1	- 6									
								-										
		-		-	++	-	++	-										
		-	-	-	1	+	Ħ		- 7									
		-		1	11	-	$\ddagger$	-										
1		-		1	1		$\pm$	-										
		+		+	1	+	++	+	8									
	1	-		-		-	$\square$											
				1		-	1											
				-				+	- 9									
-	-	-	H	+	++	+	+ +	+										
			11	1	11	-	$\square$			-								
		-							-10		ALLU	/IAL SOILS						
		-	$\left  \right $				++	-										
				1		-		$\mp$		T	GLACI	IAL TILL		11				
		-				1	Ħ		- 11	AT		depth to till ext	rapolated					
-		-		1			$\pm \pm$	+		A	1	from DMT 6)	. and rabed					
		-	-	-	H	+	+ +	+		Te.								
				-	11	1	$\mp$	$\square$	-12	1								
				1				$\pm$		A.P								
		+	H	+	++	+	++	+	1.0	A.L								
					11	1	11		-13	FH	1. * 1	TONE DEDDOON						
-	+ +	+	1	-	+ +	+	++	+		TTT	LIMES	STONE BEDROCK				1.1	PLATE A	.23


OGGED/DWN.	CKD.		DATE OF INVEST. 24/09/87 JOB NO. 87	422	S		HOLE NO. 15
WATER CONTENT		5	SOIL DESCRIPTION	so	IL S	AMPLE	
WP W-O WL PERCENT %		SOIL SYMBOL	DATUM SURFACE ELEVATION	CONDITION	TYPE	PENETRATION RESISTANCE	
10 20 30 40 50	60 M	101		+		R.C.	OTHER TESTS
	14		SOUND ROCK	+			REG = 20%
	15	-	NO_RECOVERY	11			
	- 15	11	SOUND ROCK				REC - 99% RQD - 60%
	16	4	SOUND ROCK	H			REC - 99%
		田	SUUND RUCK				RQD - 79%
	17	THE H	SOUND ROCK	H			REC - 100% RQD - 70%
	18	H	NO RECOVERY				
	19	Ţ	BROKEN ROCK				
		Ц	SOUND ROCK	ÌГ			REC - 84%
	20	F			_	_	RQD - 17%
	21	H	SOUND ROCK				REC - 100% RQD - 45%
	22		End hole at 21.7 m. Rock surface estimated at elev.		1		
			210.53 Top 0.9 m unsound rock.				
							PLATE A-24

DYREC	GROV & E	BURI	GE	KILDONAN CORRID	OR			
LOGGED/DWN.	CKD.			DATE OF INVEST. 25/09/87 JOB NO.	874	22		HOLE NO. 16
WATER	CONTENT		6	SOIL DESCRIPTION	SC	IL S	AMPLE	DRILL TYPE
PER	N-O WL-∆. CENT %	<b>ОЕРТН</b> М	SOIL SYMBOL	SURFACE ELEVATION 223.61 m	CONDITION	TYPE	PENETRATION RESISTANCE	
10 20 30	40 50 60	- Iu	0	SURFACE ELEVATION ELEVIOL III		-	<b>K E</b>	OTHER TESTS
		-		MATER				
		1		WATER				
		- 1						
			10					
		+					1.1	
		- 2						
		-						
		1						
	+++++++							
		- 3				8 1		
		1						
		4						
		- 5						
		6						
		0						
		- 7						
		1						
		- 8						
		- 9						
			$\rightarrow$		-11			
		1		ALLUVIAL SOLLS				FOR TESTS I
				ALLUVIAL SOILS				ALLUVIUM SE
		- 10						DMT 7
			11	1368.0. 23				5.01
			11	GLACIAL TILL				
		- 11	1.	-SOFT/LOOSE				
			411	-PUSHED DRILL RODS TO				
			I.T.I	BEDROCK SURFACE				
		- 12	11					
					11			
			A					
			11					
		- 13	11		- 1			
			14	LIMESTONE BEDROCK			ſ	PLATE A-25

OGGED/DWN.	CKD.			KILDONAN CORRIDO	874	22		HOLE NO. 16
WATER (	CONTENT		đ	SOIL DESCRIPTION	-		SAMPLE	DRILL TYPE
Wp - W -		DEPTH	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION	
10 20 30	40 50 60	m	SC		10		N. W	OTHER TESTS
		14	1	BROKEN ROCK TO 13.7 m	1			
		1	ĪŢ	3 - 6mm clay seams at 14.0 m			100	REC - 75%
		1	IT		T	-		
		15	ti	SOUND ROCK	T			REC - 95%
			1					RQD - 68%
		16	tt					
			ŢŢ		+	-		
			#	——— 225 mm seam or soft rock				REC - 98%
		- 17	11					1120 90%
		-	#					
	11111	1 10	Ţ	······	+	-	1	-
		18	1	SOUND POCK				050 000
			世	SOUND ROCK				REC - 93%
		19	Ľц		+	-		
				NO RECOVERY				
		20						
				Abandon hole at 20.1 m				
				Drill rods jamming				
		1						
								Sec. 1
								PLATE A-26

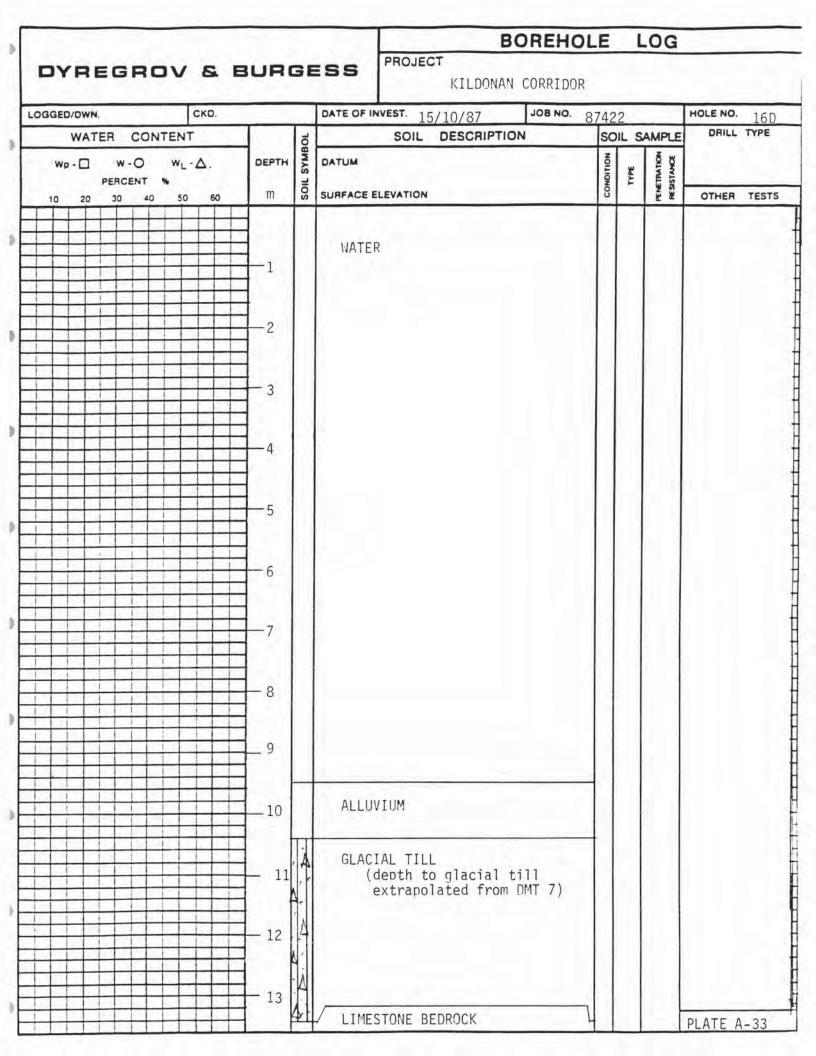
DYRE	DYREGROV & BURGESS BOREHOLE LO PROJECT KILDONAN CORRIDOR CKD. DATE OF INVEST. 06/10/87 JOB NO. 87422															
LOGGED/DWN.		СК	<b>D</b> .			DATE OF IN	VEST. 06/10/87	JOB NO.	3742	2		HOLE NO.	16A			
WATER	CONT	ENT			5		SOIL DESCRIPT		-		AMPLE					
Wp - 🗆		-Ο w _L -Δ.			L SYMBOL	DATUM			CONDITION	-	PENETRATION	1				
	30 40	50	60	m	SOIL	SURFACE EL	EVATION		COM		PENE	OTHER	TESTS			
						WATER										
			++	1 1												
				- 1												
			H	1								6				
				t												
				- 2								8 A.				
+++++			++-	-					11							
				1												
				- 3												
				t												
				4												
			++-													
				1												
			H	1		1										
				- 5		8										
				- 6												
				0												
				- 7												
				- 8												
				0												
				- 9												
						Constant a	at the set of									
		11		11.2		ALLUVI	AL SOILS									
				- 10												
					1.1	1000	13 T 1 1 1 1 1		11							
				1.1	N	GLACIA	L TILL									
				- 11	1		oth extrapolate	d from DMT	1							
				1.00	4	(			11							
					1.4											
				12	1.1											
				12	14											
					14											
					1.1											
				— 13	州											
					4						ł	DI 4777				
				1.1.1	41					-	-	PLATE A	-27			

C	YR	EC	SR	0	V	8	E		-	E	SS PROJECT	CORRIDO	R			
LOG	GED/DWI	۹.				CKD.					DATE OF INVEST. 06/10/87	DB NO. 8	742	2		HOLE NO. 16A
	WA	FER	cc	NT	ENT				1	JOL	SOIL DESCRIPTION		SC	DIL S	AMPLE	DRILL TYPE
	wo - 🗆	PEF	CENT	*				DEP	тн	IL S	DATUM SURFACE ELEVATION		CONDITION	TYPE	PENETRATION PESISTANCE	OTHER TESTS
T	0 20	3		0	50	64	, 				GLACIAL TILL		f		Εœ	OTHER TESTS
-			-		+		-		14	TH I	LIMESTONE BEDROCK					REC - 1009 ROD - 67%
					-		+	1	15		UNSOUND ROCK					
+							-				NO CORE RECOVERY					
-							-		16							
								-	7							
					+		+									
					-				.8							
					+			-1	9							
1									20	+					-	
				+			-				UNSOUND ROCK					
								- 2	21		NO CORE RECOVERY					
					-		-	- 2	22							
1									A	H	UNSOUND ROCK					REC - 30%
					-			- 2	3							
				1				- 2	4		End hole at 23.6 m.					
				+												
					1											
				-	-											
+		++		+	+		-									
		1		-	-		-								t t	PLATE A-28

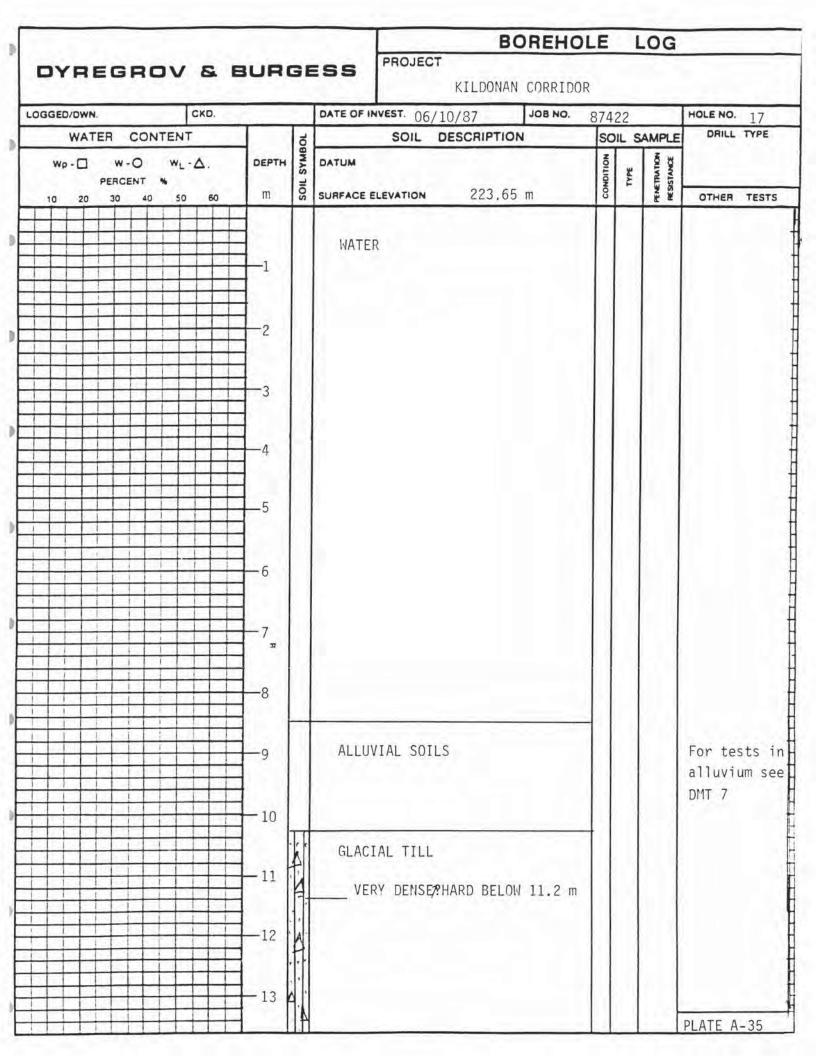


# DYREGROV & BURGESS PROJECT

÷


#### BOREHOLE LOG

KILDONAN CORRIDOR


LOGGED/DWN. CKD.							DATE OF INVEST. 07/10/87 JOB NO.	8742	2		HOLE NO.	16B				
	WAT	TE	R	CON	TEN	T				ы	SOIL DESCRIPTION			AMPLE	DRILL	
	Wp - 🗆		W -			L-A	<b>.</b> .		DEPTH	IL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION RESISTANCE		
	10 20		30	40	5	50	60	_	m	SOIL	SURFACE ELEVATION 223.69 m	8		REN	OTHER	TESTS
+		+	-		+	+	+	$\vdash$	-14	711		-	-		-	
-		-	-		+	-	-		-14	Ť	LIMESTONE BEDROCK				REC -	1009
1		1			-		-		ic zit	11	SOUND ROCK				ROD -	
+		t							-15	13		+				
-		+	-	-	+	-	+	-	10	111					REC -	98%
1		1					-			4	SOUND ROCK		1		ROD -	83%
+		+			+		-		16	44						
+		+	-	-	+		+		10	T						
1		1					-			4						
1		1							17	T	SOUND ROCK				REC -	96%
+		+	+	-	+		+			4					ROD -	90%
-		1	-				-			T						
T		1					1		18	4		++				-
-		+		-	1		1	H		H					REC -	94%
-		T		-	-		-	H		TH	SOUND ROCK				ROD -	73%
1		1					1		-19	A					and -	1 3 10
1		1		-	1		-	-		7						
-		-	-		-		-	H		1.0		+	-			
1		1					-		-20		NO RECOVERY					
1		1					1	H			End hole at 20.0 m					
1		1			-		-	H			Drill rods jamming in broken					
1		Î.				-					rock and clay.					
1		t														
1		1		-		-	-	-								
-		1		-	-	-	-									
1		1	1													
1		+	++	+	1	-	1	H								
1	-	-		-		-	-									
1		Ì		-		1						11				
1		1		-			1					11				
-		F		+	H		-	-								
10		1	1	-			1									
1		+	+		+	1	1									
-		+	+ +	-	+ +		-	-								
1		Ì		-		-										
Ť		1	++				1									
-		-		+	+ -	-	-	-								
		1	11		$\square$	-										
-		1	++	1		-	1									
1		1					-	-							PLATE A	20

	ROVS			KILDONAN CORRIDO				Weiner	_
OGGED/DWN.	CONTENT	1	1.	DATE OF INVEST. 14/10/87 JOB NO. 8	_			HOLE NO.	
Wp- W	-Ο w _L -Δ.	DEPTH	0	SOIL DESCRIPTION	-		PENETRATION PENETRATION	DRILL	TYPE
10 20 30	40 50 60	m	SOIL	SURFACE ELEVATION	CONDITION	TYPE	ENETR RESIST	OTHER	TEST
	T		T		+			5117211	
				WATER		KI Q			
		+							
		-1					1		
		- 2	1.1						
		3							
		4			11				
		- 4	1		11				
		- 5							
		6							
		+-							
		7							
		8							
		× ×							
				the second s					
		9							
				ALLUVIUM					
		10							
		-							
		11		GLACIAL TILL					
		+ 11	FII	(depth to till extrapolated from DMT 7)					
			IL						
		12	K-T						
		12							
		+	IN						
		=	A						
	+++++	13	4						
			KI				H	PLATE A	21

DYREGE	ROV & E	UR	GE	SS PROJECT		L	.0G		
OGGED/DWN.	CKD.	-		DATE OF INVEST. 14/10/87 JOB NO.	8742	2		HOLE NO. 160	
WATER C	ONTENT		б	SOIL DESCRIPTION	sc	DIL S	AMPLE	DRILL TYPE	
WP W - C PERCEN 10 20 30		<b>оертн</b> т	SOIL SYMBOL	DATUM SURFACE ELEVATION	CONDITION	CONDITION TYPE FENETRATION		OTHER TEST	
		- 14	TH-	LIMESTONE BEDROCK SOUND ROCK				REC - 100% RQD - 85%	
		-15	HTHE	SOUND ROCK				REC - 92% RQD - 91%	
		-16		SOUND ROCK		-		REC - 98%	
		-17			_	-		RQD - 96%	
		-18 -19		SOUND ROCK				REC - 1009 RQD - 1009	
		-20		BROKEN ROCK, NO RECOVERY	-				
		-21	帀	NO RECOVERY SOUND ROCK	T		-	REC - 93%	
		-22						RQD - 73%	
		-23		End hole at 22.3 m.					
								PLATE A-32	

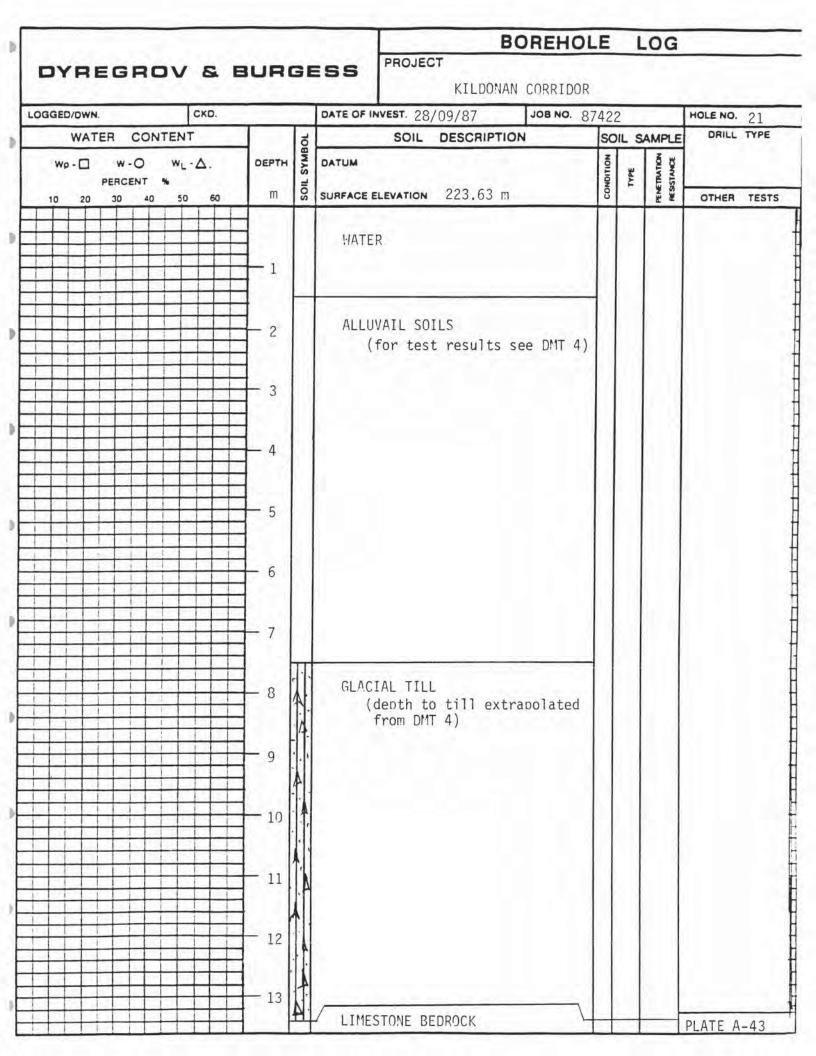


2.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1.0.0		BOREHO	DLE	L	OG	
DYREGROV &	BUR	GE	SS PROJECT KILDONAN CORRIE	OR			
OGGED/DWN. CKD.			DATE OF INVEST. 15/10/87 JOB NO.	874	422		HOLE NO. 16D
WATER CONTENT		JOL	SOIL DESCRIPTION	SC	DIL S	AMPLE	DRILL TYPE
WP- W-O WL-A.	DEPTH	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION	
10 20 30 40 50 60	m	in li	SURFACE ELEVATION	0	-	5 X	OTHER TESTS
	14	Ť	150 mm clay or soft rock				REC - 69% RQD - 67%
	-15	ÌÌ		+	-	-	
	=		NO RECOVERY				
	16		SOUND ROCK				REC - 88%
	17	TTTT	SOUND ROCK				REC - 100% RQD - 93%
	18	11	SOUND ROCK	-		-	
	=		NO RECOVERY				
	19	H	SOUND ROCK				
	20		UNSOUND ROCK				REC - 30% RQD - 10%
	21	TTT-	SOUND ROCK				REC - 80% RQD - 63%
		Ŧ	BROKEN ROCK	-			
			End hole at 22.5 m.				
							PLATE A-34



OGGED/DWN.	CKD.		_	DATE OF INVEST. 06/10/87 JOB NO. 8	-			HOLE NO. 17
	CONTENT O $W_L - \Delta$ .	DEPTH	SYMBOL	SOIL DESCRIPTION	-		AMPLE § ø	DRILL TYPE
	NT %	m	SOIL S	SURFACE ELEVATION	CONDITION	TYPE	PENETRATION	OTHER TESTS
<b>H</b> HH		- 14	A.	GLACIAL TILL	T			
		14	Ħ	LIMESTONE BEDROCK	F			
		15		NO RECOVERY 14.3 to 15.5 m				
		16		SOUND ROCK				REC - 99% RQD - 99%
		17		SOUND ROCK				REC - 97% RQD - 75%
		18	-++++-	SOUND ROCK				REC - 97% RQD - 79%
			1	SOUND ROCK				REC 100%
		- 20	11	BROKEN ROCK				REC 0%
		21	#	- SOUND ROCK				REC - 100% RQD - 70%
		22		SOUND ROCK				REC - 93% RQD - 30%
		23		End hole at 22.6 m.				

D	YR	E	R	0	v	8	B	URC	3 E	ss	PROJEC		ONAN CORRID				.06		
OGG	ED/DW	(N.	-		Te	CKD.	-			DATE OF IN	IVEST. 21/	09/87	JOB NO.	2	742	2	-	HOLE NO.	10
		TER	co	NT	1		1		-			DESCRIP				-	AMPLE		
		1 1				-		DEPTH	IL SYMBOL	DATUM					CONDITION	TYPE	PENETRATION RESISTANCE		
10	20	30	4	0	50	60	-	m	SOIL	SURFACE E	LEVATION	223.08		-	8	밀	H.	OTHER	TESTS
$\square$					-		$\square$												
										WATE	R							19. A	
+		++			+		++	-1											
	1									6									
					-			S. 1											
	11		-					-2											
				i	1														
					-														
								-3	19										
	++						+												
	1																		
			-		1			-4											
							$+ \mathbf{T}$	4											
	11							1.1											
	++	++	+			-	+												
						_		-5											
-	++	++		-		-	+												
	11	-				-													
	++		1	1				-6											
					-	-													
		1	1	1															
	++	++	++	+			++	- 7											
	11	1	1	1			$\square$												
			1	-		-													
-			11	-		-	1	-8											
	1																		
	+		+		+	+	H												
	11	11	+1	1	11	-	T	-9											
1						-													
		11			-	+	-												
	11							- 10											
	+1	+-	+1	-	++	-	+	10											
	11		11	-		-													
+	++		++	-	++	+	-							_					
	11		11		11			-11	4										
			++						A	GLACE	IAL TILL								
	1		H		11	-	1												
	İ		11					-12	4										
	++	++	++	+	++	+	+	Í.	N										
	11		11		11	-				LIMES	STONE RE	DROCK	BROKEN TO	121	T	1			
+		++				-		-13	1					-11	-	-		-	
	11			-	1	-		1	1º	SOUN	D ROCK,	13.1 -	13.8 m				t	PLATE A	27


WATER CONTENT         SOIL DESCRIPTION         SOIL SAMPLE         DBILL TYPE           we-C         we-C         we-C         m         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g	WATER         CONTENT         Dept         SOIL         DESCRIPTION         SOIL         SAMPLe         DRILL TYPE           V0 - C         w - Q         w Q         w Q         w Q         m         Dept         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g <td< th=""><th>OGGED/DWN.</th><th>CKD.</th><th></th><th></th><th>DATE OF INVEST. 21/09/87 JOB NO. 87</th><th>742</th><th>2</th><th>-</th><th>HOLE NO. 18</th></td<>	OGGED/DWN.	CKD.			DATE OF INVEST. 21/09/87 JOB NO. 87	742	2	-	HOLE NO. 18
W0-C         W-O         WL-Q.         DEFTH         DefTIM         DefTIM <thdeftim< th="">         DefTIM         <thdeftim< th=""></thdeftim<></thdeftim<>	Wo - C         Wo - O         WL - A.         DEFTH         M         D         DATUM         SURFACE ELEVATION         223.68 m         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th="">         D         D         <thd<< th=""><th></th><th></th><th>T</th><th>×</th><th></th><th>-</th><th></th><th>AMPLE</th><th></th></thd<<></thd<>			T	×		-		AMPLE	
14       14       10       13.9 m       REC - 87%         15       300MD ROCK       25 mm clav seam at 14.6 m       REC - 95%         15       300MD ROCK       REC - 95%         16       15       300MD ROCK       REC - 95%         16       16       16       16         17       SOUND ROCK       REC - 95%         18       SOUND ROCK       REC - 95%         19       19       19         19       19       19         19       20       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         21       SOUND ROCK       REC - 95%         22       End hole at 22.3 m.       KEC - 93%	14       14       WO RECOVERY 13.8 - 13.9 m       REC - 87%         SOUND ROCK       25 mm clay seam at 14.6 m       REC - 95%         15       SOUND ROCK       REC - 95%         16       15       SOUND ROCK       REC - 95%         16       16       17       SOUND ROCK       REC - 95%         17       SOUND ROCK       REC - 95%       RQD - 65%         18       SOUND ROCK       REC - 95%       RQD - 65%         19       19       SOUND ROCK       REC - 95%       RQD - 87%         20       SOUND ROCK       REC - 95%       RQD - 85%         21       SOUND ROCK       REC - 95%       RQD - 87%         22       SOUND ROCK       REC - 95%       RQD - 87%         22       End hole at 22.3 m.       REC - 93%       REC - 93%	WP - W - O	w _L -∆. %	1.1	OIL SYMBC	DATUM	-			
SOUND ROCK         REC - 95%           16         1           16         1           17         SOUND ROCK           18         SOUND ROCK           18         SOUND ROCK           19         1           19         1           10         10           11         SOUND ROCK           18         SOUND ROCK           19         1           19         1           10         10           11         SOUND ROCK           18         SOUND ROCK           19         1           10         10           11         SOUND ROCK           12         SOUND ROCK           19         1           10         10           11         SOUND ROCK           12         SOUND ROCK           13         REC - 95%           14         10           15         10           16         11           17         SOUND ROCK           18         SOUND ROCK           19         SOUND ROCK           10         10           10	SOUND ROCK         REC - 95%           16         17           16         17           17         SOUND ROCK           18         SOUND ROCK           18         SOUND ROCK           18         SOUND ROCK           19         SOUND ROCK           10         REC - 95%           11         SOUND ROCK           12         SOUND ROCK           13         REC - 95%           14         SOUND ROCK           15         REC - 95%           10         REC - 95%           11         SOUND ROCK           12         SOUND ROCK           13         REC - 93%           14         REC - 93%           15         REC - 93%           16         REC - 93%	10 20 30 4	50 60	10	ŝ	SURFACE ELEVATION 223,68 m	0	-	E E	OTHER TESTS
15       SOUND ROCK       REC - 95%         RQD - 87%       RQD - 87%         16       SOUND ROCK       REC - 95%         17       SOUND ROCK       REC - 95%         18       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         20       19       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         21       SOUND ROCK       REC - 95%         22       End hole at 22.3 m.       REC - 93%	15       SOUND ROCK       REC - 95%         16       16       SOUND ROCK       REC - 95%         17       SOUND ROCK       REC - 95%         18       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         20       19       SOUND ROCK       REC - 95%         20       19       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         20       20       SOUND ROCK       REC - 95%         21       SOUND ROCK       REC - 95%         22       End hole at 22.3 m.       REC - 93%			14	TH TH	SOUND ROCK	1			
16       16       17       SOUND ROCK       REC - 95%         17       18       SOUND ROCK       REC - 95%         18       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         10       19       SOUND ROCK       REC - 95%         19       SOUND ROCK       REC - 95%         20       SOUND ROCK       REC - 95%         21       SOUND ROCK       REC - 93%         21       SOUND ROCK       REC - 93%         21       SOUND ROCK       REC - 93%         22       End hole at 22.3 m.       Image: Source of the second sec	16       16       17       SOUND ROCK       REC - 95%         17       18       SOUND ROCK       REC - 95%         18       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         19       19       SOUND ROCK       REC - 95%         10       19       SOUND ROCK       REC - 95%         19       SOUND ROCK       REC - 95%         20       SOUND ROCK       REC - 95%         21       SOUND ROCK       REC - 93%         21       SOUND ROCK       REC - 93%         21       SOUND ROCK       REC - 93%         22       End hole at 22.3 m.       Image: Source of the second sec			15	규		Ţ			
Image: Sound Rock       REC - 95%         Image: Sound Rock       REC - 93%         Image: Sound Rock       End hole at 22.3 m.	Image: Sound Rock       REC - 95%         Image: Sound Rock       REC - 93%         Image: Sound Rock       End hole at 22.3 m.			16						RQD - 87%
18       18       SOUND ROCK       REC - 95%         19       19       19       19         10       19       19       19         10       10       19       10         11       10       19       10         11       10       19       10         11       10       19       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10 <t< td=""><td>18       18       SOUND ROCK       REC - 95%         19       19       19       19         10       19       19       19         10       10       19       10         11       10       19       10         11       10       19       10         11       10       19       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         <t< td=""><td></td><td></td><td></td><td></td><td>SOUND ROCK</td><td></td><td></td><td></td><td></td></t<></td></t<>	18       18       SOUND ROCK       REC - 95%         19       19       19       19         10       19       19       19         10       10       19       10         11       10       19       10         11       10       19       10         11       10       19       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         11       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10         12       10       10       10 <t< td=""><td></td><td></td><td></td><td></td><td>SOUND ROCK</td><td></td><td></td><td></td><td></td></t<>					SOUND ROCK				
SOUND ROCK     REC - 95%       RQU - 87%       RQU - 87%       REC - 95%       REC - 93%       REC - 93%       REC - 93%	SOUND ROCK     REC - 95%       RQU - 87%       RQU - 87%       REC - 95%       REC - 93%       REC - 93%       REC - 93%			- 17	T					RQD - 65%
19     19     19     REC - 95%       20     20     SOUND ROCK     REC - 95%       21     SOUND ROCK     REC - 93%       22     End hole at 22.3 m.     End hole at 22.3 m.	19     19     19     REC - 95%       20     20     SOUND ROCK     REC - 95%       21     SOUND ROCK     REC - 93%       22     End hole at 22.3 m.     End hole at 22.3 m.			- 18		SOUND ROCK				
20 21 21 21 21 21 21 21 21 21 21 21 21 21	20 21 21 21 21 21 21 21 21 21 21 21 21 21			- 19	Ţ		_			
22 SOUND ROCK REC - 93%	22 SOUND ROCK REC - 93%			_ 20	Ŧ	SOUND ROCK				REC - 95%
22 SOUND ROCK REC - 93%	22 SOUND ROCK REC - 93%				ļ			_	-	
End hole at 22.3 m.	End hole at 22.3 m.			- 21		SOUND ROCK				REC - 93%
				- 22	til.					
				- 23		End hole at 22.3 m.				

DYA	EGF	101		5. E	URC	36	SS PROJ	ECT	BOREHO					
GGED/DW	N.		СК	D.			DATE OF INVEST.	19/09/87	JOB NO.	8742	2	1	HOLE NO.	19
WA	TER C	ONTE	NT			5		L DESCRIPT				AMPLE	DRILL	TYPE
	W-C	) w			DEPTH	0	DATUM	and and		CONDITION	TYPE	PENETRATION RESISTANCE		
10 20			50	60	m	SOIL	SURFACE ELEVATIO	223.62		CO	_	REN.	OTHER	TESTS
				++	1									
			H				WATER							
		11		11	- 1									
			#											
		+-	+ -	$\pm \pm$	1									
				11	- 2									
		11			1									
			$+ \Gamma$	+-										
			#	+	- 3									
	+	+												
		11	H	11-	4									
			$\pm$											
+		+-		11										
			H	T	- 5									
		11	11	++			(-							
++-		+	+											
111				11	- 6									
+++	+	++-												
	4				- 7									
		11												
					1									
				+	- 8									
				11	1									
		11	-	+	- 9		1							
			11	+		X	GLACIAL T	TILL						
					1	1	(depth	n to glacia	I till					
		+-	H	1	- 10	4	extra	apolated fr	011 0)					
		11-	++			1								
		+				41	Ý							
			H	+F	- 11		<u>-</u>				Y H			
			Ħ			4	¥							
		1				11								
	+++			+ -	- 12	7								
			11	11										
+++						11								
+++		1-	H	T	- 13	A								
+++					1 -3	1							PLATE A	

OGGED/DWN.	CKD.		-	KILDONAN CORRID		22		HOLE NO. 19
WATER C		1	2	SOIL DESCRIPTION			AMPLE	
Wp - W - C	w _L -Δ.	DEPTH	L SYMBO	DATUM	CONDITION	TYPE S	PENETRATION RESISTANCE	
	40 50 60	m	SOIL	SURFACE ELEVATION	CON	-	PENE	OTHER TESTS
		1.10	TT	GLACIAL TILL	-			- · · · · · · · · · · · · · · · · · · ·
		14	T	LIMESTONE BEDROCK				REC - 30%
		-	11	BROKEN ROCK TO 14.6 m				
		15		SOUND ROCK				DEC 1000
			T					REC - 100%
		-	to					
		- 16						
		7	Į		-			
		-	1	SOUND ROCK				REC - 96%
		-17						000 040
		-	TI					RQD - 94%
		7	K		-	1	-	
		- 18	11	SOUND ROCK				REC - 96%
		-		- 2 4 5 4 5 4 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5				
		- 19	TI					RQD - 74%
		- 15	14					
		7	11	SOUND ROCK				REC - 97%
		20		्राव्य,चरण्डः , २,२०१ <b>व १२</b>				REG - 97%
			1					
			11					
		- 21		End hole at 20.7 m.				
		7 I						
		-						
		=						
		-						
		-						
		7						
		1 1						
		- 1						
		7						
		1 1						
		1						
		- 1						
		7 I						
		1						

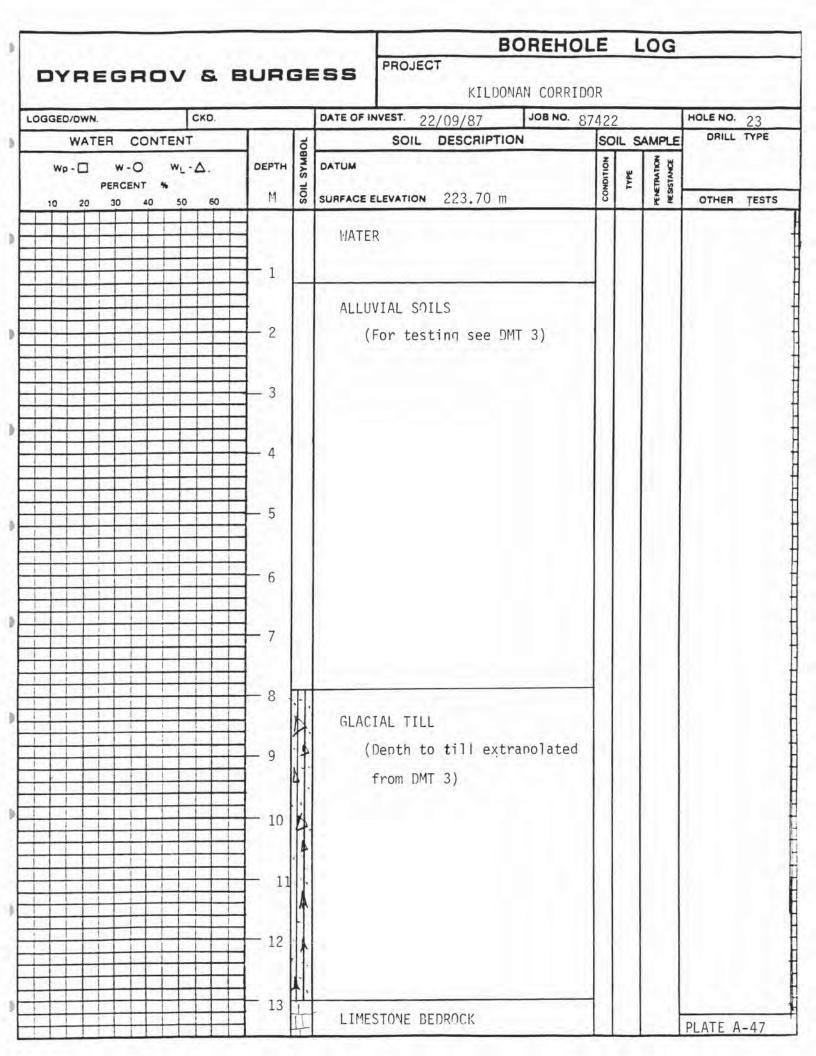
DY	RE	GR	ve	5. E	URI	GE	ESS PROJECT KILDONAN CORRIG		E	L	OG	-	
GGED	DWN.		- 1	CKD.		-	DATE OF INVEST. 03/10/87 JOB NO.		22			HOLE NO.	20
1	WATER	COM	TENT			ы	SOIL DESCRIPTION	-		- SA	MPLE		
Wp	- 🗆 PE	W-O		Δ.	DEPTH	IL SYMB	DATUM		CONDITION	TYPE	PENETRATION RESISTANCE		
10	20 3	30 40	50	60	m	SOIL	SURFACE ELEVATION 223.61 M		8	_	R S	OTHER	TESTS
++					1								
							WATER						
++					-1								
11					1	-		-					
					-2		ALLUVIAL SOILS						
							(for test results see DMT	4)					
									1				
$\pm\pm$					- 3								
					- 4								
					4								
					-5								
						84							
	1		1		-6	1							
					-0								
					-7								
11					-	ET							
11					_ 8	D	GLACIAL TILL						
1					- 0	R	(depth to till extrapolated	1					
11						D	from DMT 4)						
++					- 9	is							
+						5							
11						D							
					- 10	1,0							
						1							
					- 11	6							
						2							
						D							
	-				- 12								
11						N.							
H					- 13								
					- 13	-	LIMESTONE BEDROCK				H	PLATE A	_

DYREG	ROV & E	BURGI	PROJECT	REHOLE LOG	
OGGED/DWN.	CKD.	C	DATE OF INVEST. 03/10/87 JOE	BNO. 87422	HOLE NO. 20
WATER	CONTENT	5	SOIL DESCRIPTION	SOIL SAMPLE	
	-0 WL-A.	DEPTH DEPTH	DATUM	CONDITION TYPE FEMETRATION	
10 20 30	40 50 60	m S	SURFACE ELEVATION 223.61 m	LE CO	OTHER TESTS
		14	BROKEN ROCK 13.4 - 14.0 m		REC - 64%
		I H	SOUND ROCK BELOW 14.0 m		
			SUCHD RUCK BELUW 14.0 M		RQD - 53%
		15 1			REC - 97%
		1 4	SOUND ROCK		
					RQD - 81%
		H H			
		17丁	SOUND ROCK		REC - 95%
		T IT	A 3-2 40		RQD - 93%
		1 14			NWD - 93%
		18			
			SOUND ROCK		REC - 92%
		19 4	100 mm clay seam		RQD - 69%
		1 00 4	SOUND ROCK		REC - 97%
		- 20 T			
					RQD - 73%
		- 21			
			SOUND ROCK		
			SUUND KUUK		REC - 92%
		- 22			RQD - 79%
		1 14			
		- 23	End hole at 22.6 m.		
		1			and the second second



## DYREGROV & BURGESS PROJECT

Þ


## BOREHOLE LOG

KILDONAN CORRIDOR

LOGGED/DWN.		CK	D.			DATE OF INVEST. 28/09/87 JOB NO.	8742	2		HOLE NO.	
WAT	ER CO	NTENT		1	5	SOIL DESCRIPTION			AMPLE	DRILL	TYPE
	W-O	w∟-∆	ч	DEPTH	IL S	DATUM	CONDITION	TYPE	PENETRATION		
10 20	30 40	50	60	m	ŝ	SURFACE ELEVATION	Ŭ		Ψ.¥	OTHER	TEST
				- 14		NO RECOVERY TO 14.2 m					
					Ţ	SOUND ROCK, 14.2 - 14.8 m	-				
				- 15	TT						
					1	— — — 25 mm clay seam				REC -	
				10	4	SOUND ROCK				RQD -	44%
				- 16	4			_	_		_
					4	SOUND ROCK					
				- 17	TT					REC -	
					Í				1. L	RQD -	· 81%
				- 18	H	6 mm clay coame (2)	-   +	-			
				10	T	— — — 6 mm clay seams (2) — — — 12 mm clay seam				REC -	95%
					111	SOUND ROCK				RQD -	45%
				- 19	T	SOUND ROCK					
					T			-	1.11	1.5	
				- 20	++	SOUND ROCK			11	REC -	98%
					Ú				-	RQD -	67%
				- 21	Ţ	······································	- 14	_	-		
				- 21	4	SOUND ROCK					
					TT					REC -	100
				- 22	T					RQD -	36%
				9	11	The Cold Empire of					
				- 23		End hole at 22.4 m.					
				20							
					ł I						
					1						
					1						S.,
		+++								PLATE A	-44

DYR	EGR	ov	5.1	SUR	GE	BOREHO		L	.0G		_
			12.22		-	KILDONAN CORRI		-			
OGGED/DWN			CKD.	1	1.	DATE OF INVEST. 23/09/87 JOB NO.	-			HOLE NO.	
	TER CO		1.	-	SYMBOL	SOIL DESCRIPTION	-	1	AMPLE		
Wp - 🗌	W-O PERCENT 30 4	*	∆. 60	DEPTH m	SOIL SYN	SURFACE ELEVATION 223.68 m	CONDITION	TYPE	PENETRATION HESISTANCE	OTHER	TEST
			TTT	1	-						
				-		WATER					
				- 1							
				-			-				
				-		Landonación a das a					
				- 2		ALLUVIAL SOILS					
				-		(for testing see DMT 3)					
				- 3							
				-							
				4							
			+	-							
				- 5							
				-	1						
	6 10										
				7 6							
			+	-							
				7	1						
			+++	- '							
				1				1			
				-	-						
				8		and the second					
			+++	-	1	GLACIAL TILL					
	1000			1	N	(depth to glacial till					
			+++	- 9		extrapolated from DMT 3)					
					4-1						
			+++	-	- 4						
				1 10	N						
			+ + +	- 10	17						
				3	1.1.						
			+++								
				- 11	4						
	+		+++	-	1.						
				1	N						
			+++	- 12	1.1						
				1	A						
			+++	-							
				- 13	4.4		_				
			+++	- 13	4	LIMESTONE BEDROCK			-		-
	111					A CARLENE CLEAN A CARL			1	PLATE A	-45

			Sec.		2.6	BOREHOL PROJECT	E	L	OG		
DYRE	GRO	vc	& E	URI	GE	KILDONAN CORRIDOR	-				
OGGED/DWN			KD.			DATE OF INVEST. 23/09/87 JOB NO. 8	-			HOLE NO.	
WAT	ER CON	TENT			or	SOIL DESCRIPTION	S	DIL S	AMPLE	DRILL	TYPE
	W-O		Δ.	DEPTH	0	DATUM	CONDITION	TYPE	PENETRATION		
10 20	30 40		60	m	so	SURFACE ELEVATION 223.68 m	3		Res Res	OTHER	
		++-		1	197	BROKEN ROCK, 13.0-13.8 m	+	-	-	no REC -	000
				14	14	SOUND ROCK		1.1	1.1	RQD -	
				1	17	SOUND ROCK	T			REC -	1.1.1
				- 15	H	SUDID NUCK				RQD -	
				15	1					KWU -	03
				1	H				1.1		
				10						-	
				-16	11	and a start of the start	Γ				
					1	SOUND ROCK				REC -	96%
				1	H					RQD -	739
				-17	1						
				1	1	Line and the second second	1	1 .			_
				10		SOUND ROCK	1				
				-18	T					REC -	93%
					1					RQD -	66%
		-		1.0							
				- 19		End hale at 10.0 m	T				
						End hole at 19.0 m.					
				1							
		1									
				814							
		1		1							
		+									
				1	111		1	1		PLATE A-	-



DYRE	GROV & I	SURC	GE	SS PROJECT		L	OG	
OGGED/DWN.	CKD.			KILDONAN CORRI DATE OF INVEST. 22/09/87 JOB NO.	_		-	HOLE NO. 23
	CONTENT	T	1	SOIL DESCRIPTION			AMPLE	
wp - 🗆	W-O WL-A.	DEPTH	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION	
10 20 3	0 40 50 60	-	sc	SURFACE ELEVATION 223.70 m	3		R R	OTHER TESTS
		1	4	SOUND ROCK		f = 0	1	REC 87%
		14	ÍI					RQD 83%
			11				111	1140. 00%
		-	7			-		10000
		- 15		SOUND ROCK				REC 97%
		- 1	T				8 8	RQD - /0%
			+				5.1	10/0
		16	Ħ				12.1	
		- 10	Ţ	and the second second	-		-	
		7	t	SOUND ROCK				REC 100
			11					
		17	II					RQD - 88%
			#					
			1			_		
		- 18	L	SOUND ROCK			111	
		7 1	IT	A CANADA CANADA				REC 95%
			H			13		RQD - 47%
		19	4					
		- 15	111		14.5			
			Π	SOUND ROCK				
			T	SUUND RUCK				REC 97%
		20	ti					RQD - 61%
			H					1.4D 01%
			T					
		- 21	-					
		I F		End hole at 20.9 m.				
		- 1						
		- 1						
		+						
		- 1						
		1 1						
		+						
		1						
		- 1	118		- 1	1.1	1	PLATE A-48

OGGED/DWN.	CKD				DATE OF INVEST. 22/09/87 JOB NO. 8/2	122			HOLE NO. DMT 3
WATER	CONTENT			T.	SOIL DESCRIPTION	T	_	MPLE	
Wp-D V	N-О W _L -∆. Cent %		-	SOIL SYMBOL	DATUM	CONDITION	TYPE	PENETRATION	
10 20 30	40 50 6	0	m	s	MATER	0		<u> </u>	OTHER TESTS
					PATER				
			1						
									UNDRAINED
			2						SHEAR
				1	SILT - clayey			201	STRENGTH
				1					and the second se
			3	X	CLAY - silty				(kPa) - 10.3
			Y	1	CLAF - STILY				- 11.3
									- 12.1
		++	4	1					- 13.1
				1					- 13.9
				1					- 14.8 - 15.8
		++-	5	Ŧ					- 16.6
		$\square$		H					- 15.8
			h	1					- 26.9
			6 -	1					- 20.7
			Y		STRATIFIED SILTY CLAY AND				- 19.8
				X	CLAYEY SILT			t	- 31.2
			7					[	- 27.9
				H				ļ	- 34.5 - 38.6
			ľ						50.0
		++-	8					1.1	
			- 4		End Dilatometer testing at 7.9 m.				
					Refusal on glacial till or boulder at 7.9 m.				
					bourder at 7.5 m.				
		+							
			C (						PLATE A-49

GGED/DWN. CKD.		KILDUNAN CORRIDOR DATE OF INVEST. 30/09/87 JOB NO. 87422	HOLE NO. DMT 4
WATER CONTENT	1 12	SOIL DESCRIPTION SOIL SA	
	DEPTH J	DATUM NOLO	OTHER TESTS
10 20 30 40 50 60	sold m	SURFACE ELEVATION 223.61	OTHER TESTS
		WATER CLAYEY SILT STRATIFIED SILT, SAND, AND CLAY	UNDRAINED SHEAR STRENGTH (kPa) 28 27 27 27 36
		SILTY SAND	45 39 \$\$=34^0 \$\$=36^0 \$\$=36^0
		SILTY CLAY	- 51 - 59
	8	End dilatometer test at 7.5 m. Refusal on boulder or glacial till.	- 58

DYRE	EGR	ov	5. 1	BUR	GE	ESS	PROJECT	т	N CORRIDOF		L	.0G	
OGGED/DWN.		10	CKD.			DATE OF	NVEST. 30/0		JOB NO. 87	-	2		HOLE NO. DMT 5
	ER CON			T	Ta	-		DESCRIPTION		-	-	AMPLE	
Wp - 🗆	W-O PERCENT 30 40	wL-2		<b>DEPTH</b>	1	Second Second	ELEVATION			CONDITION		PENETRATION RESISTANCE	
		H	Ē		F	WATE	1			$\square$		-	
			1			11211 6	(			1	1/2		
			H	1						17	$\mathbb{P}^{j}$	1 /	
		11	$\square$	7						17	[ ]	1. 7	1.1
	HT	11	HT.	1	17					$\mathbb{D}$	( )	[ ]	
				2	1					11	( )	[ ]	1.1.1.1.1.1.1.1
	$\square$		A+	7	17					17		[ ]	
		T	44	4						17	[]	1 = 2	
			4+	3	1 /					[]	$\left[ \right]$	( )	
		$\pm \pm$	$\square$	-	1 /					17	[]	[ ]	1.1
	FH+		A+	Ξ.	1 /					11	[]	6 1	fill i fi
HP	<b>H</b>	11	H-	4	1					11	[]	[ ]	
			4	1	$1^{\prime}$						[]	1 ]	1
					[ ]'	l				11		$( \neg )$	
				5	$1^{\prime}$						$\left( \right)$	[ ]	1
			44	1 /	1/	k.					[]	[ ]	
			d =	- 6	1'							( )	
			H+		17						1	[ ]	
$\square$		1		7 /	1 1					11	( )	( )	UNDRAINED
		11	d <del>+</del>	7	17					11			SHEAR
		11	+	- /	$\Box'$							( I I I	STRENGTH
			++		H		202003			11			(kPa)
itt		11	11	- 8	1:1	CLAY	EY SILT,	, SILTY CLAY	/ AND		1	í J	- 24
			4	1 /	H.	SAND					1	1	- 34 - ø = 39 ⁰
				1 7	1	End	111 - tome	tactin	-+ 0 5 1	1)	1		- y - 33
	$\square$		H	- 9		Refu	sal on g	ter testing	] dt 0.5 n ]				1
HP	<b>H</b>				[]		Contract Co			11	1		
		11	4	1 '	[]								
				- '	17	1				11	1	- 1	(
			A+		[]							1	
			44	1 '	( )						1		6
			1	- /	( )					11	1		
			11	- 7	( )						1		
					( )					11	11	1	6
			4	1 /	[]					11	1	61	
		11	#	- /	[]					11		6 I)	í l
		++	1	4 /	[]					11	$\left[ \right]$		6
TH			T	1 /	[ ]					11	[]	1	
	III	+11		1/	( )								PLATE A-51

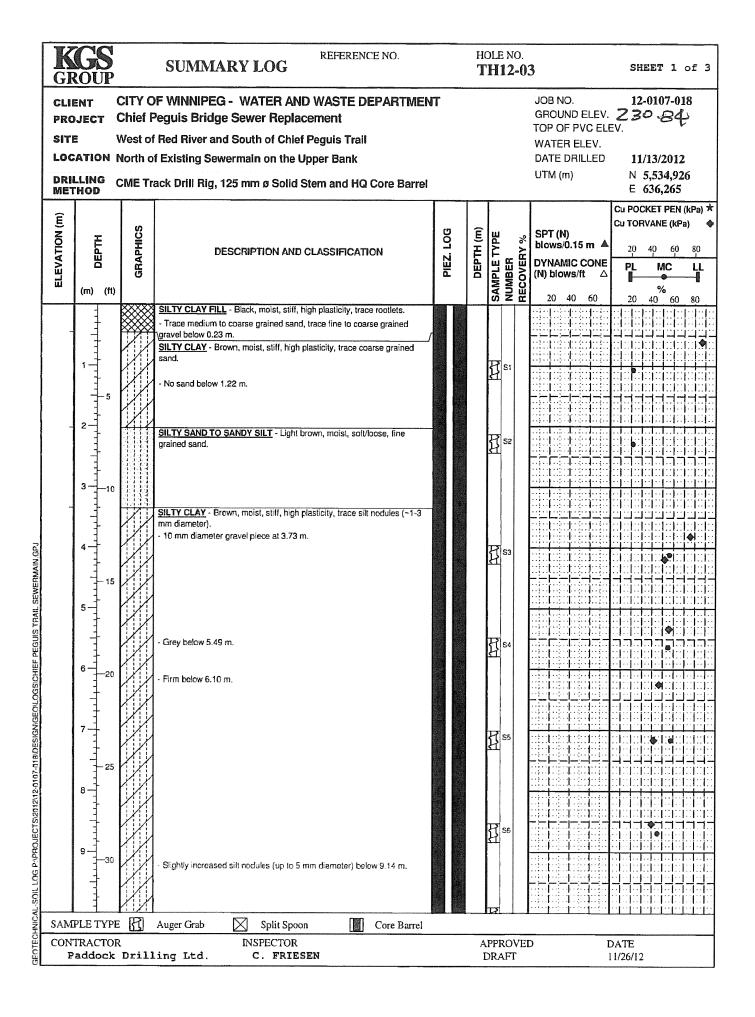
								SURG			KIL	DONAN CORRID					
.00	GED/C	2.0.0		-		CKD		-	_	DATE OF IN	WEST. 30/09/87		-			HOLE NO.	
	W	ATE	R	CON	TENT	1	-		SYMBOL		SOIL DESCRI	PTION	-	IL S	AMPLE	DRILL	TYPE
	Wp -			O	w	-Δ.		DEPTH	MAS TI	DATUM			CONDITION	TYPE	PENETRATION		
-	10	20	30	40	50	6	0	m	SOIL	SURFACE E	LEVATION 223.61		ŭ			OTHER	TESTS
-	+									UNTER							
		1	-							WATER					1		
-		+	-		++	-		1								Ş.,	
_	++		-														
		11	-				_										
			-					-2	i i					1. 8			
-							-										
-		H	-														
-	1	11	-					-3									
	11		-	H			-										
			-				-	4									
			-														
_		+ 1	-												1.		
-		H	-			-		-5		1							
-			-					1									
-																	
		-	-			+		-6									
		H	-			+								13			
			-				_										
								-7									
1						+											
						+	-			1							
1		-	-			+1		-8									
			-			-	-										
						1		-9									
-																	
-		-	-		+	+	-										
			-			11		-10		N		_	+1				
			-							ALLUV	IAL SOILS						
-			-			1				1	1.0.000	S. attached					
-			+			+		- 11			rod nushed fr						
-	11	11	-							10.6 I	m. Refusal on ulder at 10.6	m.					
1			-							0, 00							
-								- 12									
-					1-												

-	DYREGR	aov	5. E	BUR	GE	ss	PROJECT KILDONAN CORRIE		L	.0G		
OG	GED/DWN.	-	CKD.			DATE OF IN	IVEST. 30/09/87 JOB NO.	8742	2		HOLE NO.	DMT 7
	WATER C	ONTENT	r	T	1		SOIL DESCRIPTION	-		AMPLE	DRILL	
	Wp - W - C	D WL	-Δ.	DEPTH	SOIL SYMBOL	DATUM		CONDITION	TYPE	PENETRATION		
-	10 20 30	40 50	60	m	^o	SURFACE E	LEVATION	0		R.E.	OTHER	TESTS
			1.1.1	1								
						MATE	2					
F				+ 1		1.00				1.1		
				1					8.15			
-				+								
1				- 2								
-				- 2								
1				1								
1				1 .		C.						
1				- 3								
-												
				-								
-				4								
						0						
				1								
-				- 5								
1				1								
				1		8						
1				- 6								
-		+ + +										
F				1 -								
-				<b>†</b> 7								
				1								
-				8								
-				1								
-				- 9								
				-								
				1								
				- 10								
						L						
-			+++-	1	F	CL AC	IAL TILL - soft/loose					
1				1 11	1							
-				- 11	T	-	Drill rods pushed with no rotation from 10.4					
				1	Ð		to 13.1 m. Refusal on					
1				1 10	FT		probable bedrock at 13.1	m.				
				- 12	4							
1					0							
		+++	+	1	B							
				13	T			-1				
1			11	-						5	PLATE A	52

PRO SITI LOC	1. J.	Chief East of South	DF WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement Red River and South of Chief Peguis Trail of Existing Sewermain on the Upper Bank Frack Drill Rig, 125 mm ø Solid Stem and HQ Core Barrel			JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	
ELEVATION (m)	(ii) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	SAMPLE TYPE NUMBER RECOVERY %		Cu POCKET PEN (kPa Cu TORVANE (kPa) 20 40 60 80 PL MC L1 96 20 40 60 80
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SILTY CLAY FILL - Brown, moist, stiff, intermediate to high plasticity, some medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel, trace rootlets. SILTY CLAY - Brown, moist, stiff, high plasticity, trace fine to medium grained sand.		<b>B</b> 51		
	2 111111		SAND - Brown, moist, compact, fine to medium grained, trace coarse grained sand, trace silt, trace clay.		₽ 52		
	4	5	SILTY SAND - Brown, moist, loose, fine to medium grained, with silt, trace clay.		¥s₃		
	5	<u>स्ट</u> ान	- Water noticed on sample at ~ 5.49 m. SANDY SILT - Brown, moist, firm, intermediate to high plasticity, trace		₽ <u>₹</u> \$4		
	6-1-2	0	SILTY SAND - Brown, moist, soft, fine to medium grained, trace oxidation. - Grey, no oxidation below 6.71 m. SAND - Grey, moist, compact, medium grained, some fine and coarse		FT 55		
	8	5	SILTY CLAY - Grey, moist, firm, high plasticity. - Medium grained sand layer between 7.39 and 7.47 m. SILTY SAND - Grey, moist, soft, fine to medium grained sand, with silt.		बर <b>भि</b>		
-	et up up	0	- Organic layer between 8.53 and 8.64 m.		⁸²		
SAM	PLE TY	PE R	- Increased sand between 9.75 and 9.96 m. Auger Grab Split Spoon Core Barrel		B 57		

KG	S JP	REFERENCE NO.		HOLE NO. <b>FH12-0</b> 2	2	SHEET 2 of 3
ELEVATION (m) (ii)	(t) GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG DEPTH (m)	SAM NUM REC(	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ _20_40_60	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) ◆ 20 40 60 80 PL MC LL % 20 40 60 80
11 12 13 13 14 14 15 16 16 16 17 16 17 17 16 16 17 17 17 17 18 18 18 19 10 10 10 10 10 10 10 10 10 10		Increased sand between 10.36 and 10.52 m.     SILTY SAND - Grey, moist, compact, medium grained, trace fine     grained sand, trace clay.     Test hole squeezing at 10.67 m.     Z5 mm thick organic layer at 12.50 m.     Decreased sand between 12.95 and 13.26 m.     SILTY CLAY - Grey, moist, firm, high plasticity, trace coarse grained     sand, trace fine grained gravel, trace silt nodules.     Grain Size Distribution: Gravel (1.0%), Sand (8.8%), Silt (21.9%), Clay     (57.0%) at 14.63 m.     SILT TILL - Tan, moist, compact, with medium to coarse grained sand,     some fine grained gravel, trace coarse grained gravel.     Loose, decreased gravel below 16.46 m.     Auger refusal at 18.34 m on bedrock. Switched over to core below     t8.34 m.     LIMESTONE BEDROCK - White, competent, vertical and horizontal     fractures.				
SAMPLE T CONTRAC	TOR	Auger Grab Split Spoon Core Barrel INSPECTOR Ling Ltd. C. FRIESEN		APPROVEI DRAFT		

K	GS		REFERENCE NO.			DLE H1		2				SHE	ET	3 0	f
	E	lics		90	(m)	PE	%	SP	Γ (N) ws/0.15	im 🔺	Cu	TOR	/ANE	(kPa)	
EVATI	рертн	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	PLE TV	NUMBER RECOVERY %	DYI (N)	NAMIC ( blows/f	CONE	-	20 PL	40 M		
딦	(m) (ft)	-1 -1				SAM		2	0 40	60	L.	20	40 40	60	80
	22				22.2	F	73 ₉₈								
	23		<ul> <li>Increased fractures below 22.94 m.</li> <li>Vertical fracture between 23.01 and 23.67 m.</li> </ul>												
						F	¹⁴ 100								
	24							· · · · · · · · ·							<u>-1-</u> -1- -1-
															1
	25					F	R5 100	· · · · · · · · · · · · · · · · · · ·							1
					25.8						H				
-	26- ¹⁻⁸⁵		END OF TEST HOLE AT 26.06 m		26.1										-1- -1- : :
			Notes: 1. Installed casagrande standpipe at a depth of 26.06 m with a stick-up of 0.64 m.												
	27		<ol> <li>Backfilled test hole with silica sand between 26.06 and 22.17 m and bentonite chips from 22.17 m to grade.</li> </ol>										-     -     -		- <u> </u> - - - - -
															-1- : : - -
	28-1														- <del>1</del> - -1- -1-
									 					-11-	
	29 - ¹ 95 - -												1		.ţ.
	30														
	100 														
	31														
	32 105 														
															-i- : ::
	33														
SAM	IPLE TYPE	Ł	Auger Grab 🔀 Split Spoon 📗 Core Barrel	<u> </u>	1						1				<u>.</u>
	TRACTOR		INSPECTOR Ling Ltd. C. FRIESEN			APPR DRA		ED			DA' 11/2	TE 26/12			


		PF WINNIPEG - WATER AND WASTE DEPARTMENT Peguis Bridge Sewer Replacement			JOB NO. GROUND ELEV TOP OF PVC EI	226	e-0107-018 6.37
		Red River and South of Chief Peguis Trail f Existing Sewermain on the Lower Bank			WATER ELEV. DATE DRILLED		/7/2012
DRILLING METHOD	Acker T	rack Drill Rig, 125 mm ø Solid Stem and HQ Core Barrel			UTM (m)	E	5,534,788 636,543
ELEVATION (m) DEPTH	GRAPHICS		YPE	%λ	SPT (N) blows/0.15 m 4	Cu TOF	CKET PEN (kPa RVANE (kPa) 40 60 80
ELEVAT DEF (H) (H)	1 -	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE	RECOVERY	DYNAMIC CONE (N) blows/ft 2	PL	MC LI
		<u>SILTY CLAY</u> - Brown, damp, firm, intermediate plasticity, trace rootlets, trace fine grained sand, trace fine grained gravel.	S XX S				
2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SAND & GRAVEL - Light grey, moist, dense, medium to coarse grained sand, fine to coarse grained gravel, some clay. - Hole squeezing at 1.63 m.	T S				
			₹ S S	3			
	• D •	SAND - Brown, moist to wet, loose, fine to medium grained, trace oxidation. - Water noticed on sample below 4.57 m.					
6- <u>-</u> 20		- Grey, no oxidation below 5.33 m.	₽¥ S	4			
		SILTY CLAY - Grey, moist, firm, high plasticity. SAND - Grey, moist, loose, medium grained, trace coarse grained sand.	- II si	5			<ul> <li>I = 1</li> <li< td=""></li<></ul>
7 		- Some to with silt, reduced sand below 7.92 m.	۲۲ si	5			
		SILTY CLAY - Grey, moist, firm, high plasticity, trace silt nodules, trace medium grained sand, trace fine grained gravel.					
SAMPLE TYP	ĽZIJ ⊧ R3	Auger Grab Core Barrel					

u       (m)       (b)       (c)		DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	UPLE TYPE	NUMBER	RECOVERY %	DYN	(N) vs/0.15 AMIC Nows/1	CONI	Cu	20 PL	40 1	60 60		)
- Stift bolew 10.06 m.       - Stift bolew 10.06 m.         - 33       - Feduced line grained gravel balow 10.67 m.         - Grain Size Distribution. Gravel (1.2%), Send (11.7%), Sit (20.5%), Clay (56.5%) at 11.5 m.         - Grain Size Distribution. Gravel (2.50 m.         - Feduced sit neobles below 12.50 m.         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (55.5%) at 11.5 m.         - Feduced sit neobles below 12.50 m.         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (55.3%) at 12.1 m.         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (55.3%) at 12.1 m.         - Feduced sit neobles below 12.50 m.         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (55.3%) at 12.1 m.         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (55.3%) at 12.1 m.         - Stift Title Tan, molit. Compact, with medium to coarse grained sand, some fire gravel below 14.60         - Grain Size Distribution. Gravel (0.6%), Sit (23.7%), Clay (65.3%) at 12.1 m.         - Looie, nebuood coarse grained sand, reduced fire to coarse grained sand, some fire gravel below 14.60         - Feduced in exclused with vertical and horizontal firebures.         - Feduced in exclused Xin the dum in vertical and horizontal firebures.         - Feduced in exclused Xin the dum in vertical and horizontal firebures.         - Feduced in exclused Xin the dum in vertical and horizontal firebures.         - Feduced in exclused Xin thebeen 21.		(m) (ft)			SAN	No.	E	2(	0.40	60		20			. 80	,
33       - Grain Size Distribution. Gravel (1.2%), Sand (11.7%), Sk (30.5%), Clay (56.6%) xt       Image: State S				- Sliff bolew 10.06 m.	ł	<b>S</b> 7							•			
11						1								 	1	-
- Crain Size Distribution. Gravel (1,2%), Sand (11,7%), Six (30,5%), Clay (56,5%) at 1156 m.       - Reduced six noclies below 12.50 m.         - Firm below 12.50 m.       - Grain Size Distribution. Gravel (0,6%), Sand (10,2%), Six (23,7%), Clay (55,5%) at 13,11 m.       - Grain Size Distribution. Gravel (0,6%), Sand (10,2%), Six (23,7%), Clay (55,5%) at 13,11 m.         - 43       SBLY YILL, - Tan, molet, compact, with medium to coarse grained sand, some fine gravel gravel, trace coarse grained sand, raduced line to coarse grained gravel below 14,55       Store         16       - Loose, reduced coarse grained sand, raduced line to coarse grained gravel below 14,55       Store         16       - Some mediated sand, raduced line to coarse grained gravel below 14,55       Store         16       - Clay seam at 19,26 m.       - Clay seam at 19,26 m.         19       - Clay between 20.12 and 20.15 m.       - Clay between 20.12 and 20.15 m.         21       - Toolow fractured limestone between 21.41 and 22.25 m.       - Yellow fractured limestone between 21.41 and 22.25 m.				- Reduced fine grained gravel below 10.67 m.												
12       -00       -15 m.       -Faduced sit nod/les below 12.50 m.         -00       - Faduced sit nod/les below 12.50 m.       - Gran SE Distribution: Gravel (0.8%), Sit (23.7%), Clay (65.5%) at 13.11 m.         -46       -10       - Sitz Distribution: Gravel (0.8%), Sit (10.2%), Sit (23.7%), Clay (65.5%) at 13.11 m.         14       -46       - Sitz Distribution: Gravel (0.8%), Sit (10.2%), Sit (23.7%), Clay (65.5%) at 13.11 m.         15       -66       - Can mole, compact, with medium to coarse grained sand, some fine graved gravel.         - Locse, neduced coarse grained sand, reduced fine to coarse grained gravel below 14.55       - Sitz Distribution: - Can mole, coarse grained sand, reduced fine to coarse grained gravel below 14.55         16       - Alger refusal at 18.78 m on bedook. Switched over to core below 16.76 m.         17       - Alger refusal at 18.78 m on bedook. Switched over to core below 16.76 m.         18       - Cary seam at 19.89 m.         20       - Clay below 12.01 g and 20.19 m.         21       - 70         - Vellow fractured Imestone between 21.41 and 22.25 m.			X X							· · • • • • • • • • • • • • • • • • • •				 	.   :	
12       -00       -15 m.       -Faduced sit nod/les below 12.50 m.         -00       - Faduced sit nod/les below 12.50 m.       - Gran SE Distribution: Gravel (0.8%), Sit (23.7%), Clay (65.5%) at 13.11 m.         -46       -10       - Sitz Distribution: Gravel (0.8%), Sit (10.2%), Sit (23.7%), Clay (65.5%) at 13.11 m.         14       -46       - Sitz Distribution: Gravel (0.8%), Sit (10.2%), Sit (23.7%), Clay (65.5%) at 13.11 m.         15       -66       - Can mole, compact, with medium to coarse grained sand, some fine graved gravel.         - Locse, neduced coarse grained sand, reduced fine to coarse grained gravel below 14.55       - Sitz Distribution: - Can mole, coarse grained sand, reduced fine to coarse grained gravel below 14.55         16       - Alger refusal at 18.78 m on bedook. Switched over to core below 16.76 m.         17       - Alger refusal at 18.78 m on bedook. Switched over to core below 16.76 m.         18       - Cary seam at 19.89 m.         20       - Clay below 12.01 g and 20.19 m.         21       - 70         - Vellow fractured Imestone between 21.41 and 22.25 m.			//	- Grain Size Distribution: Gravel (1.2%). Sand (11.7%). Silt (30.5%). Clay (56.6%) at	H											
-10       - Reduced sit nodvis below 12.50 m.         - Frm bolew 12.05 m.       - Gene Sit Distubility. Gravel (0.8%), Sin (10.2%), Sin (23.7%), Clay (65.5%) at 13.11 m.         - 45       - Sit Distubility. Gravel (0.8%), Sin (10.2%), Sin (23.7%), Clay (65.5%) at 13.11 m.         14       - Gene Sit Distubility. Gravel (0.8%), Sin (10.2%), Sin (23.7%), Clay (65.5%) at 13.11 m.         15       - Gene Gravel, Race coarse grained gravel.         - Locse, reduced coarse grained gravel.       - Locse, reduced coarse grained gravel.         - Locse, reduced coarse grained sand, reduced line to coarse grained gravel below 14.65       - Ref         16       - Gene Gravel, Race coarse grained sand, reduced line to coarse grained gravel below 14.65         17       - Locse, reduced coarse grained sand, reduced line to coarse grained gravel below 14.65         18       - Auger refusal at 16.78 m on bedrock. Switched over to core below 16.76 m.         18       - Clay between 20.12 and 20.19 m.         19       - Clay between 20.12 and 20.19 m.         20       - Velow fractured lineatone between 21.41 and 22.25 m.		12	//		ł											1
13       - Firm balow 12.95 m.         - Gran Size Distribution: Gravel (0.8%), Sand (10.2%), Sik (23.7%), Clay (85.5%) at 13.11 m.         - 45         14         - 45         18         - 45         19         - 45         10         10         11         12         13         - 45         14         15         - 45         16         17         - 55         - Auger refusal at 16.76 m on bednok. Switched over to core below 16.76 m.         18         - 65         - 0         18         - 0         - 0         - 0         - 0         - 0         - 10         - 11         - 12         - 13         - 14         - 15         - 0         - 0         - 0         - 0         - 0         - 0         - 0         - 0         - 0         - 0         - 0			//											··· ·· ··· ··		
- Gran Size Distribution: Gravel (0.8%), Sand (10.2%), Sik (23.7%), Clay (65.3%) at 13.11 m. - 45 - 14 - 55 - 17 - 55 - 17 - 55 - 17 - 55 - 17 - 55 - 17 - 66 - 66 - 68 - 68 - 68 - 70 -			XХ	- Reduced silt nodules below 12.50 m.												
- Grain Size Distribution: Gravel (0.6%), Sand (10.2%), Sit (23.7%), Clay (65.3%) at 13.11 m. - 45 -		13-		- Firm below 12.95 m.												
14       -45       Image: Structure imestance service of gravel, with medium to coarse grained sand, some fine gravel below 14.63         15       -50       Image: Structure of gravel, trace coarse grained sand, reduced fine to coarse grained gravel below 14.63         16       -60       Image: Structure of gravel, trace coarse grained sand, reduced fine to coarse grained gravel below 14.63         16       -60       Image: Structure of gravel, trace coarse grained sand, reduced fine to coarse grained gravel below 14.63         16       -60       Image: Structure of gravel, trace coarse grained sand, reduced fine to coarse grained gravel below 16.76 m.         17       -55       Image: Structure of gravel, trace coarse grained sand, reduced fine to coarse grained gravel below 16.76 m.         18       -60       Image: Structure of gravel, trace coarse grained gravel, trace coarse				- Grain Size Distribution: Gravel (0.8%), Sand (10.2%), Silt (23.7%), Clay (65.3%) at	Į	59									H	ļ
SILTYTIL         Tan, moist, compact, with medium to coarse grained sand, some fine           15         - Loose, reduced coarse grained sand, reduced fine to coarse grained gravet below 14.63           15         - So           16         - Auger refusal at 16.76 m on bedrock. Switched over to core below 16.76 m.           17         - So           18         - Clay seam at 19.69 m.           19         - Clay seam at 19.69 m.           20         - Clay seam at 19.69 m.           21         - Clay between 20.12 and 20.19 m.						]					-1-1		- <b>[</b> -			
15       - Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 14.63       510         16       - Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 14.63       511         16       - S5       - Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 14.63       511         16       - S5       - Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 14.63       511         16       - S5       - Locse, reduced coarse grained sand, reduced fine to coarse grained gravel below 16.76 m.       R1         17       - S5       - Live gravel, fractured with vertical and horizontal fractures.       R1         18       - G6       - Clay seam at 19.89 m.       - Clay between 20.12 and 20.19 m.         20       - Clay between 20.12 and 20.19 m.       - Clay between 21.41 and 22.25 m.       R4	-			SILTY TILL. Tan most compact with medium to goove series desaid as a first	4						11		::j::			•
115       -50       -50       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -				grained gravel, trace coarse grained gravel.												
15       -55       -60       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -70       -7				- Loose, reduced coarse grained sand, reduced fine to coarse grained gravel below 14 6	3 4	610										
16       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		15										7.1 		••••••		•
17       -55       - Auger refusal at 16.76 m on bedrock. Switched over to core below 16.76 m.         17       -55       - LIMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.         18       -60         19       -         19       -         -65       -         -       Clay seam at 19.69 m.         -       Clay between 20.12 and 20.19 m.         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -         -       -		50														
17       -55       - Auger refusal at 16.76 m on bedrock. Switched over to core below 16.76 m.         17       -55       - LiMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.         18       -60         19       -         19       -         -65       -         -       Clay seam at 19.69 m.         -       Clay between 20.12 and 20.19 m.         -       -         -       Yellow fractured limestone between 21.41 and 22.25 m.											15					
17       -55       - Auger refusal at 16.76 m on bedrock. Switched over to core below 16.76 m.         17       -       LIMESTONE BEDROCK       - White, fractured with vertical and horizontal fractures.         18       -       -       -         60       -       -       -         18       -       -       -         60       -       -       -         18       -       -       -         60       -       -       -         19       -       -       -         -       -       -       -         20       -       -       -         -       -       -       -         21       -       -       -         -       -       -       -         21       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -       -         -       -       -       -       -         -		16									11				<u></u>	•
17       -55       - Auger refusal at 16.76 m on bedrock. Switched over to core below 16.76 m.         17       -       LIMESTONE BEDROCK       - White, fractured with vertical and horizontal fractures.         18       -       -       -         60       -       -       -         18       -       -       -         60       -       -       -         18       -       -       -         60       -       -       -         19       -       -       -         -       -       -       -         20       -       -       -         -       -       -       -         21       -       -       -         -       -       -       -         21       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -       -         -       -       -       -       -         -					1	<b>S</b> 11									ן וויין	
17       IIMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.       IFI as         18       IFI as       IFI as         60       IFI as       IFI as         18       IFI as       IFI as         60       IFI as       IFI as         19       IFI as       IFI as         10       IFI as       IFI as         1		55			-											
18       60       19       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td></td><td>17-</td><td>┙<u>╶</u>╷┙</td><td>LIMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.</td><td>-1</td><td>R1</td><td>85</td><td></td><td></td><td></td><td></td><td></td><td></td><td>     </td><td></td><td></td></td<>		17-	┙ <u>╶</u> ╷┙	LIMESTONE BEDROCK - White, fractured with vertical and horizontal fractures.	-1	R1	85							 		
19       -65       - Clay seam at 19.69 m.         20       -65       - Clay between 20.12 and 20.19 m.         21       -70       - Yellow fractured limestone between 21.41 and 22.25 m.																
19       -       Clay seam at 19.69 m.         20       -       Clay between 20.12 and 20.19 m.         21       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -<			┱┷┱┫													
19       -       Clay seam at 19.69 m.         20       -       -       Clay between 20.12 and 20.19 m.         -       -       -       -         10       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       -         -       -       - <td></td> <td>18-7</td> <td></td> <td></td> <td></td> <td>R2</td> <td>98</td> <td></td> <td></td> <td></td> <td></td> <td>··[··[· ··[··[</td> <td>· ·   · ·  </td> <td>·· ··  ·· ·· </td> <td>··· · ··· ·</td> <td></td>		18-7				R2	98					··[··[· ··[··[	· ·   · ·	·· ··  ·· ··	··· · ··· ·	
R3       100         - 65       - Clay seam at 19.69 m.         - 65       - Clay between 20.12 and 20.19 m.         - 70       - Yellow fractured limestone between 21.41 and 22.25 m.		- 60														
R3       100			┽┰┼┨							1	1:1					
Clay seam at 19.69 m. - Clay between 20.12 and 20.19 m. - Clay between 20.12 and 20.19 m. - Yellow fractured limestone between 21.41 and 22.25 m. - Yellow fractured limestone between 21.41 and 22.25 m.		19														
20 - Clay between 20.12 and 20.19 m. 21 - 70 - Yellow fractured limestone between 21.41 and 22.25 m.						R3	100			1	1:1					
21       - Clay between 20.12 and 20.19 m.         21       - 70         - 70       - Yellow fractured limestone between 21.41 and 22.25 m.				- Clay seam at 19.69 m.												
R4 100 -70 -70 - 70 - 70		20-1	+	- Clay between 20.12 and 20.19 m.	-											
Yellow fractured limestone between 21.41 and 22.25 m.								i i	-				ii 4-4	니니	:i:: -i::	
Yellow fractured limestone between 21.41 and 22.25 m.						R4	100									
Yellow fractured limestone between 21.41 and 22.25 m.															- <u> </u> -	,
				- Yellow fractured limestone between 21.41 and 22.25 m.				<u> </u>								
KARALE CONTRACT AND A CONTRACT TO A CONTRACT AND A CONTRACT										3						
CONTRACTOR INSPECTOR APPROVED DATE		TRACTOR	Drill	INSPECTOR ing Ltd. C. FRIESEN	DR/			,			DA' 11/2	1E 26/12				

End         State         CutorRVANE (kep)           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	KGS GROUP	REFERENCE NO.	HOLE NO. <b>TH12-0</b> 3	1 SHEET 3 of 3
22	ELEVATION (m) (m) (t) GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m         20         40         60         80           DYNAMIC CONE (N) blows/ft         PL         MC         LL           %
SAMPLE TYPE K1 Auger Grab 📕 Core Barrel		- Increased fractures below 24.69 m. END OF TEST HOLE AT 25.91 m Notes: 1. Water level measured at 15.70 m below grade after chilling. 2. Backfilled test hole with a thick bentonite grout mixture and bentonite chips.	R5 100	
Z     SAMPLE ITTE     Image of ab     Image of ab       CONTRACTOR     INSPECTOR     APPROVED     DATE       Paddock Drilling Ltd.     C. FRIESEN     DRAFT     11/26/12	SAMPLE TYPE CONTRACTOR Paddock Dril:			

CLIENT PROJECT SITE LOCATION DRILLING METHOD	Chief I East of ~3 m W	OF WINNIPEG - WATER AND WASTE DEPARTME Peguis Bridge Sewer Replacement Red River and South of Chief Peguis Trail est of TH12-02 rack Drill Rig, 125 mm ø Solid Stem	NT				JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	EV. 1 N E		)12	
ELEVATION (m) (m) DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60		. M	60 8 C	80 LL 80
1 - 1 + 5 2 - 1 + 5 2 - 1 + 5 2 - 1 + 5 3 - 1 + 5 4 - 1 + 5 5 - 1 + 5 6 - 1 + 5 6 - 1 + 5 7 - 1 + 5 6 - 1 + 5 7 - 1 + 5 8 - 1 + 5 8 - 1 + 5 9 -		SILTY CLAY FILL - Brown, moist, stiff, intermediate to high plasticity, some medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel, trace rootlets.         SILTY CLAY - Brown, moist, stiff, high plasticity, trace fine to medium grained sand.         - Increased sand content below 1.83 m.         SAND - Brown, moist, compact, fine to medium grained, trace coarse grained sand, trace silt, trace clay.         SILTY SAND - Brown, moist, loose, fine to medium grained, with silt, trace clay.         SILTY SAND - Brown, moist, loose, fine to medium grained, with silt, trace clay.         SAND - Brown, moist, compact, fine to medium grained, trace silt.         SAND - Brown, moist, compact, fine to medium grained, trace silt.         SAND - Brown, moist, compact, fine to medium grained, trace silt.         SAND - Brown, moist, compact, fine to medium grained, trace silt.         SAND - Brown, moist, compact, fine to medium grained, trace silt.         SAND - Brown, moist, firm, intermediate to high plasticity, trace oxidation.         SILTY SAND - Brown, moist, soft, fine to medium grained, trace oxidation.         SILTY SAND - Brown, moist, soft, fine to medium grained, trace oxidation.         Grey, no oxidation below 6.71 m.         SAND - Grey, moist, firm, high plasticity.         - Medium grained sand layer between 7.39 and 7.47 m.         SILTY CLAY - Grey, moist, soft, fine to medium grained sand, with silt.         - Organic layer between 8.53 and 8.64 m.         S									
SAMPLE TYP	E	- Increased sand between 9.75 and 9.96 m.									

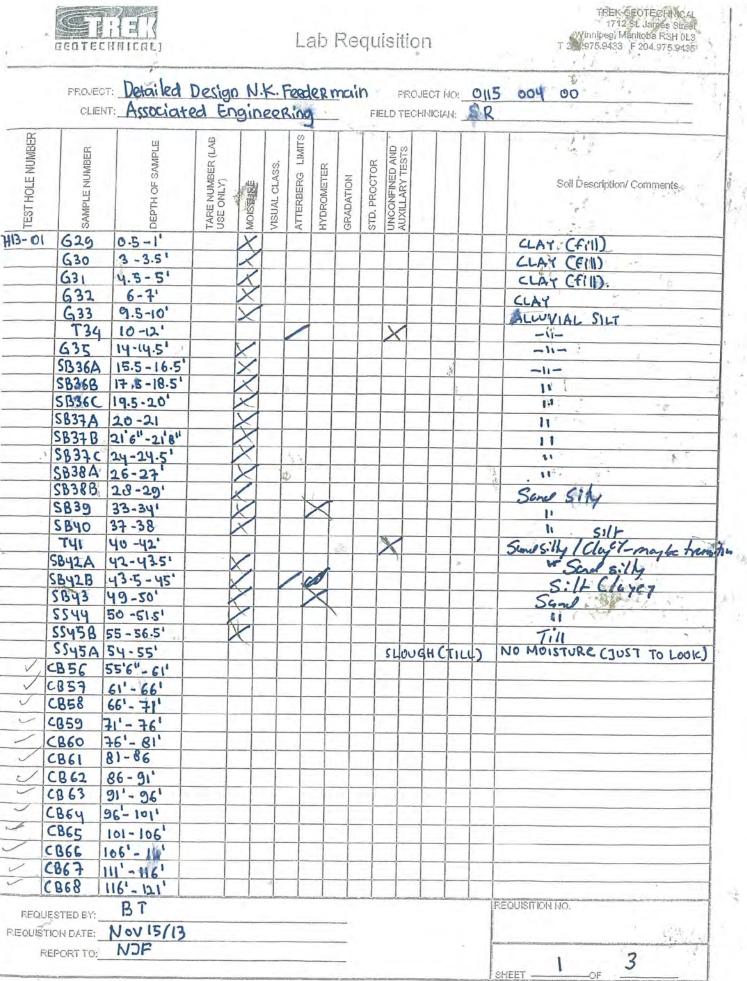
DEPTH	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m	▲ C		40 40	T PE NE (k ) 60 MC	Pa)	80 LL	
ш — 5 ш (m) (ft)			D	SAMPL NUMBE	(N) blows/ft 2		20		%		80	
	<ul> <li>Increased sand between 10.36 and 10.52 m.</li> <li><u>SILTY SAND</u> - Grey, moist, compact, medium grained, trace fine grained sand, trace clay.</li> <li>Test hole squeezing at 10.67 m.</li> </ul>	PN	11.4									
	<ul> <li>25 mm thick organic layer at 12.50 m.</li> <li>Decreased sand between 12.95 and 13.26 m.</li> </ul>											
	SILTY CLAY - Grey, moist, firm, high plasticity, trace coarse grained sand, trace fine grained gravel, trace silt nodules.											
	SILT TILL - Tan, moist, compact, with medium to coarse grained sand, some fine grained gravel, trace coarse grained gravel. - Loose, decreased gravel below 16.46 m.		16.8 17.4 17.7 18.3				******	* 1 * * 1 *		- 1 1		
	AUGER REFUSAL AT 18.34 m Notes: 1. Stratigraphy assumed from TH12-02 drilled ~3 m away. 2. Installed casagrande standpipe at a depth of 17.68 m with a stick-up of 0.91 m. 3. Installed PN 034983 at a depth of 11.58 m. below grade. 4. Backfilled test hole with silica sand between 17.68 and 16.76 m and bentonite chips from 16.76 m to grade.	~~~~~										
20	oenconte onps nom 10.70 fr) to grade,											



ELEVATION (m) (a) (b) (b) (b)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN (kPa) Cu TORVANE (kPa) 20 40 60 80 PL MC LI % 20 40 60 80 80 80 80 80 80 80 80 80 80
	XIIX.	Trace silt pockets below 12.19 m. Trace fine grained gravel below 12.50 m.			57 57 58 58			
		Reduced sill, trace coarse grained sand, no fine grained gravel below 5.24 m.						
		Occasional silt pockets/nodules below 16.92 m. Grain Size Distribution: Gravel (0.7%), Sand (7.5%), Silt (19.4%), Clay 72.4%) at 17.68 m. Trace fine grained gravel below 18.29 m.			년 동 ⁵¹²			
		BLT TILL       - Tan with grey, moist, compact, fine to coarse grained sand, ne grained gravel, trace clay.         Auger refusal at 21.03 m on bedrock.       Switched over to core below         11.03 m.	ATAR ATAR S			61		

DESCRIPTION AND CLASSIFICATION		<u>OÚP</u>	S		g	Ê		ш			SP	T (N	)		c			ET P			a)
(m)       (f)       (	ATIO	EPTJ	٩PHI	DESCRIPTION AND CLASSIFICATION	Z LC	Ē		TYP	~	RY %	bic	ws/(	0.15		1	20	) 2	<del>1</del> 0	60	80	0
(m)       (f)       (	ILEV.		GR/		E	DEP		PLE	ABEF	OVE	DY (N)					PL	•	MC	>	L	
22		(m) (ft)						SAN	N	REC	<u> </u>	20	40	60		2(	، 		60	<b>8</b> 0	ρ
23 - 75 24 - 90 25 - 90 26 - 95 26 - 95 27 - 95 28 - 95 29 - 95 29 - 95 20	1	22	╺┛╌╌╌╌ ╺╌┰╌┚╼┰╴	<ul> <li>Thin clay seam at 21.77 m.</li> <li>Vertical fracture between 21.84 and 22.05 m.</li> </ul>		Č.							+	+							Ē
24 -00 -00 -00 -00 -00 -00 -00 -0										100	· · · · · · · · · · · · · · · · · · ·			i::		ii					:  -
24       -60       -60         25       -60       -7         26       -60       -7         26       -60       -7         27       -60       -7         -60       -7       -7         -60       -7       -7         -60       -7       -7         -60       -7       -7         -7       -7       -7         -60       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       -7         -7       -7       <		-75			0000						,, ,		ţ.								
24       -00       -00         25       -00       -00         26       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         29       -00       -00         29       -00       -00         29       -00       -00         29       -00       -00         100       -00       -00         100       -00       -00         29       -00       -00         20       -00       -00         100       -00       -00         100       -00       -00         100       -00       -00         20       -00       -00         11       -00       -00         11       -00       -00         11       -00       -00         20       -00       -00		23-1				R.	ł	T			· · · · · ·					<u>i i</u>	<u>.</u>		i.i		
24       -00       -00         25       -00       -00         26       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         28       -00       -00         29       -00       -00         29       -00       -00         29       -00       -00         29       -00       -00         100       -00       -00         100       -00       -00         29       -00       -00         20       -00       -00         100       -00       -00         100       -00       -00         100       -00       -00         20       -00       -00         11       -00       -00         11       -00       -00         11       -00       -00         20       -00       -00		ł											1	-							
25		-				23.9 23.9	0	F	RЗ	97	· · · · · · · · · · · · · · · · · · ·						::i::			i	
25       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -		Ŧ									· · · ; · ·						:: <b> </b> ::			::	
28       -65         20       -65         27       -65         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -00       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -76       -76         -77       -76         -76       -77         -76       -77         -77       -77         -77       -77         -77       -77         -77       -77<							ł										-1- :::::				
26       65         27       90         90       90         28       90         90       90         28       90         90       90         90       90         90       90         90       90         91       90         92       91         93       91         94       92         95       91         96       92         97       91         98       91         99       91         90       92         91       92         92       93         93       94         94       94         95       94         96       95         97       94         98       94         99       95         90       95         91       94         92       95         94       94         95       94         96       95         97       94         96       95	2	25											<u>∤</u> ∔	1::			: :: 	:: :   -			-
20								F	94	100			1 1								
20		+										<u>г</u> -									
27	2	26											4 <u>1</u>	ler fr Ler fr			· · · ·		. <b>.</b>		-
27											· · · · · ·		 	1							
28       -       -       Fubble zone between 28.46 and 26.52 m.         -       -       -       -       -         29       -       95       -       -         30       -       -       -       -         30       -       -       -       -       -         30       -       -       -       -       -         30       -       -       -       -       -         30       -       -       -       -       -         30       -       -       -       -       -         30       -       -       -       -       -       -         30       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -								F	15	97				1							
28       - Fubble zone between 28.46 and 28.52 m.         29       -95         30       - Fubble zone between 28.52 and 28.70 m.         29       -95         30       - Fix bulle zone between 28.52 and 28.70 m.         29       -95         30       - Fix bulle zone between 28.52 and 28.70 m.         29.7       30.0         100       Notes:         1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         2. Backflied test hole with silica sand between 30.02 and 27.58 m. bentonite chips from 21.03 m to grade.         32       - 105         33       - 105																	- <u> </u>				
<ul> <li>Fubble zone between 28.46 and 28.52 m.</li> <li>Vertical fracture between 28.52 and 28.70 m.</li> <li>95</li> <li>96</li> <li>97</li> <li>100</li> <li>END OF TEST HOLE AT 30.02 m</li> <li>Notes: <ol> <li>Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.</li> <li>Backfilled test hole with silica sand between 30.02 and 27.58 m. bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.</li> </ol> </li> </ul>		90 	╶┹┱╾┵┨			27.6	5				······					jej: Tel:	i: T	id: Info		j	
<ul> <li>Fubble zone between 28.46 and 26.52 m.</li> <li>Verical fracture between 28.52 and 28.70 m.</li> <li>Verical fracture between 28.52 and 28.70 m.</li> <li>29.7</li> <li>30.0</li> <li>END OF TEST HOLE AT 30.02 m</li> <li>Notes: <ol> <li>Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.</li> <li>Bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.</li> </ol> </li> </ul>	2	28	┱┵┰┨								· · ; · ·				: ::	<u> </u> ]. ↓↓	: ::			<u>:</u>	
29       95         30       END OF TEST HOLE AT 30.02 m         100       Notes:         1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 21.03 m to grade.         32         105								F	76	100	<b>.</b> <b>.</b>										:
30       END OF TEST HOLE AT 30.02 m         100       Notes:         1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.         32       105         33       105			╺┷┱┵┨																		
30       END OF TEST HOLE AT 30.02 m         4       BR7         100       Notes:         1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.         32       105	2	29 <u>-</u> 95					H	- I						1	· · · ·		.     .			).  .	-
30       END OF TEST HOLE AT 30.02 m         100       Notes:         1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.         32       105								F	77	00	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u> ::</u> :	:		: :  			1:	
Image: Second			╶╁┰┸┨				1				••••										:
31       1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of 0.91 m.         31       2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.         32       105         33       33				END OF TEST HOLE AT 30.02 m	1		ľ				· · · · · · · · · · · · · · · · · · ·	   			:					<b>†</b> . : <b>†</b> .	
31       0.91 m.         2. Backfilled test hole with silica sand between 30.02 and 27.58 m, bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.         32       105         33       105				1. Installed casagrande standpipe at a depth of 30.02 m with a stick-up of													111 111		]) : ::		
32       105         33       105	3	n <u>-</u>		<ul><li>0.91 m.</li><li>2. Backfilled test hole with silica sand between 30.02 and 27.58 m,</li></ul>								 [			<u>.</u>		1.1			···] ·	
				bentonite chips from 27.58 to 23.93 m, slough from 23.93 to 21.03 m and bentonite chips from 21.03 m to grade.		ł											.1:1 :[::[				
		‡									· · · · · · ·										
	3	2																			
		Į							And in the local division of the local divis					i	1	i::: i:::-:-			i::i	:i: _i-	
											· · · · · · · ·										• •
	3	,									· · ; · · ·							<u>   </u>		<b>†</b> . : <b>†</b> .	
SAMPLE TYPE 🔣 Auger Grab 🔀 Split Spoon 🔲 Core Barrel																	·]··]				_

K	<b>GS</b> ROUP		REFERENCE NO.			DLE N <b>H12</b>		3B	SHEET	1 of 3
SITE	JECT	Chief F West of	F WINNIPEG - WATER AND WASTE DEPARTMEN Peguis Bridge Sewer Replacement Red River and South of Chief Peguis Trail est of TH12-03	ΙT				JOB NO. GROUND ELEV. TOP OF PVC ELE WATER ELEV. DATE DRILLED UTM (m)	11/14/.	
	LLING ( HOD	CME Tra	ack Drill Rig, 125 mm ø Solid Stem						N E	
ELEVATION (m)	(m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER	ECOVERY %		<b>Cu TORVAN</b>	60 80 IC LL
			SILTY CLAY FILL - Black, moist, sliff, high plasticity, trace rootlets.			ΰŻ	Ē	20 40 60	20 40	60 80
-	+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +		Trace medium to coarse grained sand, trace fine to coarse grained gravel below 0.23 m. <u>SILTY CLAY</u> - Brown, moist, stiff, high plasticity, trace coarse grained sand.							
	1		- No sand below 1.22 m.							
	2		SILTY SAND TO SANDY SILT - Light brown, moist, soft/loose, fine grained sand.							
-	3- <u>1</u> -10		SILTY CLAY - Brown, moist, stiff, high plasticity, trace silt nodules (~1-3 mm diameter).							
SAMP	4 4 15		- 10 mm diameter gravel piece at 3.73 m.							
	5		- Grey below 5.49 m.							
	6 <u>20</u>		- Firm below 6.10 m.							
	7									
	8									
	9 9 9		<ul> <li>Slightly increased silt nodules (up to 5 mm diameter) below 9.14 m.</li> </ul>							
SAME CONT Pa	PLE TYPE TRACTOR addock		INSPECTOR ing Ltd. C. FRIESEN			PPRO DRAFT			ATE 1/26/12	


	(m) N(m)		cs		g	(m	Ш.		SPT (N	)	Cu		CKET I		
ATIC	DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	R TYP		biows/( Dynam	).15 m 4		20	40	60 1	80
ELEV			В		BIE	Ē	SAMPLE TYPE NUMBER		(N) blov	vs/ft 2		PL	M	,	
	(m)	(ft)	- 121				A D R	Ë	20	40 60	<u> </u> +	20	40 40	60	80
		- 35											· · · · ·		
															<u>.</u> 
					- DN	11.6 11.8									
	12-					11.6		ł	······································	* · · · · • • • · · · • • · · · · • • • •	· · · · · · · · · · · · · · · · · · ·		•••••	·· ··  ·· ··	···]·· ··]·· ··]··
		-40		<ul> <li>Trace silt pockets below 12.19 m.</li> <li>Trace fine grained gravel below 12.50 m.</li> </ul>									니니		
				- Hace the graned graver below 12.50 m.										:: ::  :: ::	
	13							ľ							
		- 45						ł							
	14-	ľ						+							<u></u>
		ĺ								 					
	15														
		-50		- Reduced silt, trace coarse grained sand, no line grained gravel below				ſ					·· ··  		
			15.24 m.				ŀ						.		
	16	ľ						╞							
										l :: 1 		11		- <b> </b> -	
		55		- Ocassional silt pockets/nodules below 16.92 m.									· ·   · ·   · . ·     :		
		ł													
		ľ						ŀ						ובר: ביו לי	
	18												· · [ · · ] ·	• • • • • • • • • • • • • • • • • • •	··[··]
		-60		Trace fine grained gravel below 18.29 m.											
	19-	ł													
-		Í		SILT TILL - Tan with grey, moist, compact, fine to coarse grained sand, fine grained gravel, trace clay.											
		65						-							
	20					20.1									
						20.7									
-	21			AUGER REFUSAL AT 20.98 m		21.0									
		-70		Notes:											
				1. Stratigraphy assumed from TH12-03 drilled ~2 m away.				ŀ							
	PLE T			INSPECTOR			PPROV				D.47				
			Dril	Ling Ltd. C. FRIESEN			DRAFT	مان	,		DA1 11/2				

K	GS		REFERENCE NO.			DLE NO. H12-0	3B	SHEET 3 of 3
ELEVATION (m)	HL H G (m) (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △	PL MC LL
GEOTECHNICAL-SOIL LOG PAPPOJECTS/2012/0107-018/DESIGN/GEO/LOGS/CHIEF PEGUIS TRAIL SEWERMAIN GPJ	22		<ul> <li>2. Installed casagrande standpipe at a depth of 20.98 m with a stick-up of 0.86 m.</li> <li>3. Installed PN 034985 at a depth of 11.64 m. below grade.</li> <li>4. Backfilled test hole with silica sand between 20.98 and 20.12 m and bentonite chips from 20.12 m to grade.</li> <li>5. Test hole squeezing at 8.53 m shortly after drilling.</li> </ul>					
GEOTEC NOD	TRACTOR addock	Drill	INSPECTOR Ling Ltd. C. FRIESEN	, <u>, , , , , , , , , , , , , , , , , , </u>		PPROVE DRAFT		DATE 11/26/12



Appendix C

Laboratory Testing Results





## Lab Requisition

TREK GEOTECHNICAL 1712 St. James Street Winnipeg, Manitoba R3H 0L3 T 204.975.9433 F 204.975.9435

		T: Detailed	Design red E	N.I ngi	K. Fe	eder	mo	nin	FIE	PR LD TE	OJEC	T NO:	0113 004 00 SR/BH.
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	STD. PROCTOR	UNCONFINED AND AUXILLARY TESTS	Red That	Wscul	Soil Description/ Comments
FH13-0	Y SBI	6-8		X	-								CLAY
1	582	8'-10' 10'-12		X									
	T3	10-12	-	1						V			
	SB4	12-14		H									
	SBS	14'-16'		X									
	SB6	16'-18'		K		1							
1	SB7	18'-20'		K									
	T8	20'-22'				1				X			
-	SB9	22'-24'	·	X							_		
	SBID	24'-26'		K	,		_						
(	SBII	26' -28'		A		_		_		_			
-	SBIZ	28-30	-	X			_		_		_	_	
1	TIJ	30'-32'		- D			_		-	X	-	-	
1-	SBIY	32'-34'		1			-	-	-	_	-	_	
	SBIS	34'-36'		1.2	-	-	-		-	-	-		
	SBIG	36'-38'	-	T		-	-		-	-			
	SBIT	40'-42'		K			+		-	-	10		
1	T18 5B19	42'-44'		1.	1		-		-1	-		-	- maybe transition
	5820	44'-46'	-	1			+		+	-+			
	SB21	49-40		6			+		-		-		
	SB22	46'-48' 49:4"-50' 50'-51.5'		12		+	+	-	+	-	-		SILT (TILL)
2	58823	50-51.5'		K			+		-		-		
	SB24	52'-54'	-	5		-	-	-	+	-	+	-	
50	80.25	54'-54'4"		12			-		+	-	+	-	SILT CTILL) SILT CTILL)
11	CRIG	54'-54'4" 55'8"-61'		-		-	-		+	-	+		ROCK (BOUIDER)
V	CB27	61'-66'					1		+	-	-	-	limestone
N	1228	66 - 71	-	1		-	-	-			-		limestone
-04	G29	1.5-2.5'		K			1	-		1	-	-	<u>LLAT</u>
acent)	630	4'-5'		1			1	-		1			
*	631	4'-5'		K		-	1		+	-	-	-	
4	631	9-10'		R					+		-		1 J
			1	11			-				-		
XI	Re la	cl tag	e	-	1-7	9.	3	46		-	+		
-	LC 16;	C 749	2	-	12	5 -	>	43	-	-		-	
-				1	63	1 3	5	40	-	-		-	
				1	0-3		5			-	-	_	1
	a tradination.com	DT		لمنحك	00		-	49	4-1				REQUISITION NO.
	ESTED BY:		-	6									
REQUIST	FION DATE:	Nov 15/1	3										
F	EPORT TO:	NJF											SHEFT 2 3
	the state of the s		amonta and a statement		International						-		SHEETOF



## Lab Requisition

	PROJECT CLIENT	Detailed Associate	Designed En	<u>gin</u>	.K.	Fee	der )	ma	FIE	PR( LD TE(	DJECT NO:	BI	5 004 0 L	D		-
TEST HOLE NUMBER	SAMPLE NUMBER	DEPTH OF SAMPLE	TARE NUMBER (LAB USE ONLY)	MOISTURE	VISUAL CLASS.	ATTERBERG LIMITS	HYDROMETER	GRADATION	1	UNCONFINED AND AUXILLARY TESTS					√ Comments	
13-05	25-69	53'-54'5" 53.5'-55' 55'-60' 60'-65' 65'-10' 70'-75' 75-80'7 75'-80'7 39'0-84'8" 89'7'-94'3" 89'7'-94'3" 99'1"-106'1 102'6"-106' 106'-110" 110'-115'		1												
	CB +0	50.5 - 55		-	-						-					
5	CB72	60'-65'	1	-		-	-	-								
~	CB73	65-10	1	1		-	-	-	-			-				
~	CB74	70'- 75'	1							-						
/	CB75	75-807	9404											5		
~	CB76	79'10-84'8"														-
~	CB77	848-89'7"	1													
.L	CB78	89'7"-94'3"					_	_	_		-		-	_		
	CDED	94.2 - 99.1"	. Lell		-	_	-	-	-	_		_				
-	CBQI	291 - 1061	97.6.		-	-	-	-	-	1						
~	(Be)	106 106			-		-	-	-	-					-	
/	(383	10-115					-	-	+	-						_
-	8.	40														
					_	-	_		_							
-				-+	_		-	_	-							2
					+		-	_		_						11/24
					-	-	+	+	-							
										-						
					_											
				-	-		_		-	_						
				_	_	_		_	_							
						_			_			+			_	
					-					_						
												+				and a star
										+		1-+				1 70
				-	1		1	1				$\uparrow$				
DEOUR	ESTED BY:	BT				crarles	and the second					F	REQUISITION NO	),		
		Nov 15/13										ALC: NOT				
	EPORT TO:							-				-	Contract Contractory			
RE	- ON 10	INCE											2	OF	3	



Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain
Sample Date	22-Oct-13
Test Date	24-Oct-13

Technician Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	0.2 - 0.3	0.9 - 1.1	1.4 - 1.5	1.8 - 2.1	2.9 - 4.6	5.9 - 6.1
Sample #	G29	G30	G31	G32	G33	G35
Tare ID	P30	К3	F32	F124	D8	N99
Mass of tare	8.3	8.4	8.2	8.3	8.4	8.4
Mass wet + tare	339.3	399.8	439.9	224.7	390.2	403.8
Mass dry + tare	270.3	327.4	352.9	191.4	306.6	309.4
Mass water	69.0	72.4	87.0	33.3	83.6	94.4
Mass dry soil	262.0	319.0	344.7	183.1	298.2	301.0
Moisture %	26.3%	22.7%	25.2%	18.2%	28.0%	31.4%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	4.3 - 4.4	4.7 - 4.9	5.3 - 5.6	6.1 - 6.4	6.6 - 6.6	7.3 - 7.5
Sample #	SB 36A	SB 36B	SB 36C	SB 37A	SB 37B	SB 37C
Tare ID	F104	E10	Z30	Z75	F102	F66
Mass of tare	8.5	8.8	8.3	8.4	8.5	8.4
Mass wet + tare	588	468.8	653.3	446.3	387.3	649.9
Mass dry + tare	444.3	363.1	479.5	334.3	296.3	498.5
Mass water	143.7	105.7	173.8	112.0	91.0	151.4
Mass dry soil	435.8	354.3	471.2	325.9	287.8	490.1
Moisture %	33.0%	29.8%	36.9%	34.4%	31.6%	30.9%

Test Hole	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01	TH13-01
Depth (m)	7.9 - 8.2	8.5 - 8.8	10.1 - 10.4	11.3 - 11.6	12.8 - 13.3	13.3 - 13.7
Sample #	SB 38A	SB 38B	SB 39	SB 40	SB 42A	SB 42B
Tare ID	H79	E96	N90	Z64	Z101	F33
Mass of tare	8.4	8.6	8.5	8.2	8.3	8.4
Mass wet + tare	398.0	599.7	656.3	470.9	474.1	457.6
Mass dry + tare	296.2	486.4	501.9	379.0	386.3	361.1
Mass water	101.8	113.3	154.4	91.9	87.8	96.5
Mass dry soil	287.8	477.8	493.4	370.8	378.0	352.7
Moisture %	35.4%	23.7%	31.3%	24.8%	23.2%	27.4%



www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

Sample Date 22-Oct-13 **Test Date** 24-Oct-13 Technician Chiran Peiris

Test Hole	TH13-01	TH13-01	TH13-01	TH13-04	TH13-04	TH13-04
Depth (m)	14.9 - 15.2	15.2 - 15.7	16.8 - 17.2	1.8 - 2.4	2.4 - 3.0	3.7 - 4.3
Sample #	SB 43	SB 44	SB 45B	SB 1	SB 2	SB 4
Tare ID	W39	F29	N54	F56	D29	Z50
Mass of tare	8.2	8.3	8.3	8.2	8.1	8.2
Mass wet + tare	403.8	379.1	294.2	359.7	403.0	626.7
Mass dry + tare	318.9	315.9	268.0	228.2	258.3	410.1
Mass water	84.9	63.2	26.2	131.5	144.7	216.6
Mass dry soil	310.7	307.6	259.7	220.0	250.2	401.9
Moisture %	27.3%	20.5%	10.1%	59.8%	57.8%	53.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	4.3 - 4.9	4.9 - 5.5	5.5 - 6.1	6.7 - 7.3	7.3 - 7.9	7.9 - 8.5
Sample #	SB 5	SB 6	SB 7	SB 9	SB 10	SB 11
Tare ID	N71	N37	H41	N68	P21	W16
Mass of tare	8.4	8.6	8.4	8.3	8.5	8.3
Mass wet + tare	466.7	502.5	369.4	402.5	481.1	505.9
Mass dry + tare	306.8	327.4	250.7	283.3	326.2	344.5
Mass water	159.9	175.1	118.7	119.2	154.9	161.4
Mass dry soil	298.4	318.8	242.3	275.0	317.7	336.2
Moisture %	53.6%	54.9%	49.0%	43.3%	48.8%	48.0%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	8.5 - 9.1	9.8 - 10.4	10.4 - 11.0	11.0 - 11.6	11.6 - 12.2	12.8 - 13.4
Sample #	SB 12	SB 14	SB 15	SB 16	SB 17	SB 19
Tare ID	F89	F53	F55	Z130	W27	A103
Mass of tare	8.3	8.5	8.4	8.3	8.2	8.4
Mass wet + tare	649.4	602.3	542.2	781.3	552.8	551.4
Mass dry + tare	421.3	472.1	363.0	520.3	354.8	382.3
Mass water	228.1	130.2	179.2	261.0	198.0	169.1
Mass dry soil	413.0	463.6	354.6	512.0	346.6	373.9
Moisture %	55.2%	28.1%	50.5%	51.0%	57.1%	45.2%



nt Associated Engineering	Droiget No.	0115 001 00
A second to a might be might be might be a second be second be second be a sec	Project No.	0115 004 00
ect Detailed Design North Kildonan Feedermain	Client	Associated Engineering
	Project	Detailed Design North Kildonan Feedermain
	Project	Detailed Design North Kildonan Feederm

Sample Date22-Oct-13Test Date24-Oct-13TechnicianChiran Peiris

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04	TH13-04
Depth (m)	13.4 - 14.0	14.0 - 14.6	15.1 - 15.2	15.2 - 15.7	15.8 - 16.5	16.5 - 16.6
Sample #	SB 20	SB 21	SB 22	SB 23	SB 24	SB 25
Tare ID	A26	E38	W65	W15	P08	F14
Mass of tare	8.2	8.3	8.3	8.3	8.5	8.5
Mass wet + tare	402.6	568.1	582.7	350.7	486.7	337.1
Mass dry + tare	265.1	415.6	529.6	261.9	439.4	310.3
Mass water	137.5	152.5	53.1	88.8	47.3	26.8
Mass dry soil	256.9	407.3	521.3	253.6	430.9	301.8
Moisture %	53.5%	37.4%	10.2%	35.0%	11.0%	8.9%

Test Hole	TH13-04	TH13-04	TH13-04	TH13-04	
Depth (m)	0.5 - 0.8	1.2 - 1.5	1.8 - 2.1	2.7 - 3.0	
Sample #	G46	G47	G48	G49	
Tare ID	D15	K1	N65	N72	
Mass of tare	8.4	8.3	8.4	8.4	
Mass wet + tare	366.8	373.1	414.0	380.5	
Mass dry + tare	296.0	294.2	260.6	244.0	
Mass water	70.8	78.9	153.4	136.5	
Mass dry soil	287.6	285.9	252.2	235.6	
Moisture %	24.6%	27.6%	60.8%	57.9%	

Test Hole		
Depth (m)		
Sample #		
Tare ID		
Mass of tare		
Mass wet + tare		
Mass dry + tare		
Mass water		
Mass dry soil		
Moisture %		



Project No. Client Project	0115 004 00 Associated Engine Detailed design of		Feedermain			
Test Hole	TH13-01					
Sample #	T 34					
Depth (m)	3-3.5					
Sample Date	12-Nov-13				Liquid Limit	45
Test Date	25-Nov-13				Plastic Limit	15
Technician	Chiran Peiris				Plasticity Index	29
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blow		34	15	23		
Mass Wet Soil		18.021	19.111	19.345		
Mass Dry Soil +	F Tare (g)	16.832	17.544	17.640		
Mass Tare (g)		14.060	14.181	13.883	M	
Mass Water (g)		1.189	1.567	1.705	· · · · · · · · · · · · · · · · · · ·	
Mass Dry Soil (		2.772	3.363	3.757		
Moisture Conte	ent (%)	42.893	46.595	45.382	1	
47       47         46       46         45       44         43       43         42       42	*	•		/ = -4.498ln(x) + R ² = 0.951!		
41						
10			25 umber of Blo	ws (N)		100

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.660	20.395		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Mass Dry Soil + Tare (g)	19.799	19.534			
Mass Tare (g)	14.222	13.986		1	
Mass Water (g)	0.861	0.861			
Mass Dry Soil (g)	5.577	5.548			
Moisture Content (%)	15.438	15.519			



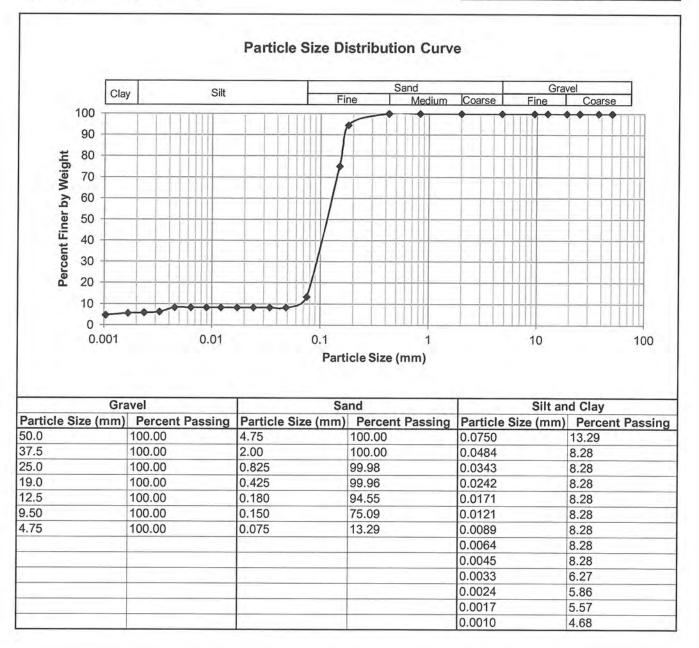
Client Project	Associated Engin Detailed design of		Feedermain			
Test Hole	TH13-01					
Sample #	T 08					
Depth (m)	6-6.7					
Sample Date	15-Nov-13				Liquid Limit	75
Test Date	25-Nov-13				Plastic Limit	18
Technician	Chiran Peiris				Plasticity Ind	
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blo		30	24	15		
Mass Wet Soil		19.850	20.389	18.145	-	
Mass Dry Soil	+ Tare (g)	17.367	17.635	16.305		
Mass Tare (g)		13.906	14.061	14.047		
Mass Water (g	)	2.483	2.754	1.840		
Mass Dry Soil	(g)	3.461	3.574	2.258		
Moisture Conte	ent (%)	71.742	77.057	81.488		
82 81 80 80 79 78 77 76 75 75 74 72 71				3.34ln(x) + 118.0 R ² = 0.9364	7	
70			-i			
10			25 umber of Blo	(1)		100

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.611	20.638			
Mass Dry Soil + Tare (g)	19.619	19.630			
Mass Tare (g)	14.222	13.967			
Mass Water (g)	0.992	1.008			0
Mass Dry Soil (g)	5.397	5.663			
Moisture Content (%)	18.381	17.800			




Project No. Client Project	0115 004 00 Associated Engin Detailed design o	eering f North Kildonan I	Feedermain			
Test Hole Sample # Depth (m)	TH13-01 SB 42B 13-13.7					
Sample Date	15-Nov-13				Liquid Limit	32
Test Date	25-Nov-13				Plastic Limit	15
Technician	Chiran Peiris				Plasticity Index	17
Liquid Limit						
Trial #		1	2	3	4	5
Number of Blo		15	20	29		
Mass Wet Soil		19.717	20.793	21.239		
Mass Dry Soil	+ Tare (g)	18.267	19.125	19.516		
Mass Tare (g)		14.065	14.069	14.136		
Mass Water (g		1.450	1.668	1.723		
Mass Dry Soil		4.202	5.056	5.380		
Moisture Conte	ent (%)	34.507	32.991	32.026		
Moisture Content (%) 34 33 35 35	*			8ln(x) + 44.388 = 0.9601		
31			i			
10			25 Imber of Blo	ws (N)		100

Trial #	1	2	3	4	5
Mass Wet Soil + Tare (g)	20.928	20.248			1
Mass Dry Soil + Tare (g)	20.033	19.440			
Mass Tare (g)	14.121	14.019			
Mass Water (g)	0.895	0.808			
Mass Dry Soil (g)	5.912	5.421			
Moisture Content (%)	15.139	14.905			




Project No.	0115 004 00		
Client	Associated Engineering		
Project	Detailed Design North Kildonan Feedermain		
Test Hole	TH13-01		
Sample #	SB 39		
Depth (m)	4.6 - 5.0	Gravel	0.0%
Sample Date	15-Nov-13	Sand	50.7%
Test Date	22-Nov-13	Silt	27.3%
Technician	Chiran Peiris	Clay	22.0%





Project No.	0115 004 00		
Client	Associated Engineering		
Project	Detailed Design North Kildonan Feedermain		
Test Hole	TH13-01		
Sample #	SB 43		
Depth (m)	4.6 - 5.0	Gravel	0.0%
Sample Date	15-Nov-13	Sand	50.7%
Test Date	22-Nov-13	Silt	27.3%





Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain
Test Hole	TH13-01
Sample #	T34
Depth (m)	3.0 - 3.7
Sample Date	15-Nov-13
Test Date	20-Nov-13

Hachem Ahmed

#### Tube Extraction

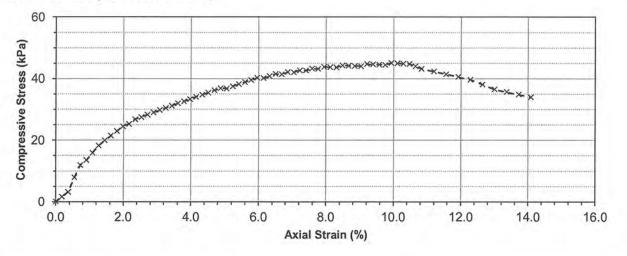
Technician

Recovery (mm) 550

Bottom - 3.7 m 3.0 m - Top Qu PP Tv YBulk Visual With clay Moisture Some clay 180 mm 210 mm 160 mm Visual Classification **Moisture Content** Silt (Alluvial) Tare ID Material N03 Some clay to with clay Mass tare (g) Composition 8.4 Trace sand Mass wet + tare (g) 493.8 Trace oxidation Mass dry + tare (g) 370.3 Trace organics (roots) Moisture % 34.1% Unit Weight Bulk Weight (g) 1097.00 Color dark grey Moisture moist Length (mm) 1 140.95 Consistency stiff 2 140.82 Plasticity high plasticity 3 140.93 Structure 4 140.14 Gradation Average Length (m) -0.141 Torvane Diam. (mm) 1 71.94 Reading 0.70 2 71.66 Vane Size (s,m,I) 3 72.51 m Undrained Shear Strength (kPa) 68.7 4 72.37 Average Diameter (m) 0.072 Pocket Penetrometer Reading 1 1.30 Volume (m³) 5.75E-04 2 1.60 Bulk Unit Weight (kN/m³) 18.7 3 1.40 Bulk Unit Weight (pcf) 119.1 Average 1.43 Dry Unit Weight (kN/m³) 14.0 Undrained Shear Strength (kPa) 70.3 Dry Unit Weight (pcf) 88.8



Project No. Client	0115 004 00 Associated E					
Project		ign North Kildonan Feed	lermain			
Test Hole	TH13-01					
Sample #	T34					
Depth (m)	3.0 - 3.7			Unconfine	ed Strength	
Sample Date	15-Nov-13				kPa	ksf
Test Date	20-Nov-13			Max q _u	45.1	0.9
Technician	Hachem Ahn	ned		Max S _u	22.5	0.5
Specimen D	Data					
Description	Silt (Alluvial) stiff, high pla		, Trace sand, Trace oxidat	ion, Trace org	ganics (roots), dark g	prey, moist,
Length	140.7	(mm)	Moisture %	34%		
Diameter	72.1	(mm)	Bulk Unit Wt.	18.7	(kN/m ³ )	
L/D Ratio	2.0	(iiiii)	Dry Unit Wt.	14.0	$(kN/m^3)$	
Initial Area	0.00409	(m ² )	Liquid Limit	14.0	(KIN/III)	
Load Rate	1.00	(%/min)	Plastic Limit			
Load Nate	1.00	(70/11/11)	Plasticity Index			
Undrained S	Shear Stren	gth Tests				
Torvane	Pocket Pe			rometer	All a state of the	
Reading	Undrained	Shear Strength	Reading	Undraine	d Shear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.70	68.7	1.43	1.30	63.8	1.33	
Vane Size			1.60	78.5	1.64	
m			1.40	68.7	1.43	
			1.43	70.3	1.47	
Failure Geo	metry					
Sketch:			Photo:			
		70° /	Project OIIS OO4 O Locabon N.K. Freederma	the state of the second s		
			Hole No <u>TH3-01</u> Sample N Depth <u>10'-12'</u> Date <u>No</u> Technicain <u>HA</u>	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER		




Vinnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

**Unconfined Compressive Strength** ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Graph



#### Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004085	0.0	0.00	0.00
10	2	0.2540	0.18	0.004092	6.5	1.60	0.80
20	4	0.5080	0.36	0.004100	13.1	3.19	1.59
30	10	0.7620	0.54	0.004107	32.7	7.96	3.98
40	15	1.0160	0.72	0.004115	49.1	11.93	5.97
50	17	1.2700	0.90	0.004122	55.7	13.50	6.75
60	20	1.5240	1.08	0.004130	65.5	15.86	7.93
70	23	1.7780	1.26	0.004137	75.3	18.21	9.11
80	25	2.0320	1.44	0.004145	82.4	19.89	9.94
90	27	2.2860	1.62	0.004153	89.0	21.43	10.72
100	29	2.5400	1.81	0.004160	95.6	22.98	11.49
110	31	2.7940	1.99	0.004168	102.2	24.53	12.26
120	32	3.0480	2.17	0.004176	105.5	25.27	12.63
130	34	3.3020	2.35	0.004183	112.1	26.80	13.40
140	35	3.5560	2.53	0.004191	115.4	27.53	13.77
150	36	3.8100	2.71	0.004199	118.7	28.27	14.13
160	37	4.0640	2.89	0.004207	122.0	29.00	14.50
170	38	4.3180	3.07	0.004214	125.3	29.73	14.87
180	39	4.5720	3.25	0.004222	128.6	30.46	15.23
190	40	4.8260	3.43	0.004230	131.9	31.18	15.59
200	41	5.0800	3.61	0.004238	135.2	31.90	15.95
210	42	5.3340	3.79	0.004246	138.5	32.61	16.31
220	43	5.5880	3.97	0.004254	141.8	33.32	16.66
230	44	5.8420	4.15	0.004262	145.1	34.03	17.02

TREK Shelby - North Kildonan Feedermain - TH13-01 - T34 Page 2 of 3



Unconfined Compressive Strength ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	
240	45	6.0960	4.3323	0.004270	148.3	34.74	17.37
250	46	6.3500	4.51	0.004278	151.7	35.46	17.73
260	47	6.6040	4.69	0.004286	155.0	36.16	18.08
270	48	6.8580	4.87	0.004294	158.3	36.85	18.43
280	48	7.1120	5.05	0.004303	158.3	36.78	18.39
	40						
290		7.3660	5.23	0.004311	161.6	37.48	18.74
300	50	7.6200	5.42	0.004319	164.9	38.17	19.08
310	51	7.8740	5.60	0.004327	168.1	38.86	19.43
320	52	8.1280	5.78	0.004336	171.4	39.54	19.77
330	53	8.3820	5.96	0.004344	174.7	40.22	20.11
340	53	8.6360	6.14	0.004352	174.7	40.15	20.07
350	54	8.8900	6.32	0.004361	178.0	40.82	20.41
360	55	9.1440	6.50	0.004369	181.4	41.51	20.75
370	55	9.3980	6.68	0.004377	181.4	41.43	20.71
380	56	9.6520	6.86	0.004386	184.6	42.10	21.05
390	56	9.9060	7.04	0.004394	184.6	42.02	21.01
400	57	10.1600	7.22	0.004403	187.9	42.68	21.34
410	57	10.4140	7.40	0.004412	187.9	42.60	21.30
420	58	10.6680	7.58	0.004420	191.2	43.26	21.63
430	58	10.9220	7.76	0.004429	191.2	43.18	21.59
440	59	11.1760	7.94	0.004438	194.5	43.84	21.92
450	59	11.4300	8.12	0.004446	194.5	43.75	21.87
460	59	11.6840	8.30	0.004455	194.5	43.66	21.83
470	60	11.9380	8.48	0.004464	197.8	44.31	22.16
480	60	12.1920	8.66	0.004473	197.8	44.23	22.11
490	60	12.4460	8.85	0.004481	197.8	44.14	22.07
500	60	12.7000	9.03	0.004490	197.8	44.05	22.03
510	61	12.9540	9.21	0.004499	201.1	44.70	22.35
520	61	13.2080	9.39	0.004499	201.1	44.61	22.30
	61				201.1		
530		13.4620	9.57	0.004517		44.52	22.26
540	61	13.7160	9.75	0.004526	201.1	44.43	22.22
550	62	13.9700	9.93	0.004535	204.4	45.07	22.53
560	62	14.2240	10.11	0.004544	204.4	44.98	22.49
570	62	14.4780	10.29	0.004554	204.4	44.89	22.44
580	62	14.7320	10.47	0.004563	204.4	44.80	22.40
590	61	14.9860	10.65	0.004572	201.1	43.99	21.99
600	60	15.2400	10.83	0.004581	197.8	43.18	21.59
620	59	15.7480	11.19	0.004600	194.5	42.29	21.14
640	58	16.2560	11.55	0.004619	191.2	41.40	20.70
660	57	16.7640	11.91	0.004638	187.9374	40.52	20.26
680	56	17.2720	12.27	0.004657	184.6457	39.65	19.83
700	54	17.7800	12.64	0.004676	178.0178	38.07	19.04
720	52	18.2880	13.00	0.004695	171.4345	36.51	18.26
740	51	18,7960	13.36	0.004715	168.1428	35.66	17.83

TREK Shelby - North Kildonan Feedermain - TH13-01 - T34 Page 3 of 3



Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain
Test Hole	TH13-01
Sample #	T41
Depth (m)	12 - 12.8
Sample Date	15-Nov-13
Test Date	21-Nov-13
Technician	Hachem Ahmed

#### **Tube Extraction**

Recovery (mm) 630

Bottom - 12.8	m					12.0 m - Top
PP Ty Visual				Qu		
Tv Visual Moisture				Ув	ulk	
Clay silt -	Some silt —	~~		s	ilty	>
100 mm	100 mm		160 mm		160 mm	110 mm
Visual Class				loisture Co	ntent	
Material	Caly and silt (Alluvial)		T	are ID		f151
Composition	Some silt to silty		M	ass tare (g)		8.4
Trace organics			M	ass wet + ta	re (g)	409.4
Trace oxidation	1		M	ass dry + tar	e (g)	309.3
				oisture %		33.3%
			U	nit Weight		
	the second s		В	ulk Weight (g	g)	1161.70
Color	Dark grey					
Moisture	Moist		L	ength (mm)	1	151.52
Consistency	Stiff				2	151.64
Plasticity	Intermediate	· · · · · · · · · · · · · · · · · · ·			3	151.82
Structure	-				4	151.37
Gradation	-		A	verage Leng	th (m)	0.152
Torvane			D	iam. (mm)	1	72.38
Reading	2	0.52			2	72.58
Vane Size (s,n	n,l)	m			3	72.38
Undrained She	ear Strength (kPa)	51.0			4	72.55
Pocket Pene	tramatar		A	verage Diam	eter (m)	0.072
Reading	1	1.10	V	olume (m ³ )		6.25E-04
reading	2	1.20		ulk Unit Weig	abt (1-N/m3)	18.2
	3	1.10		ulk Unit Weig		116.0
	Average	1.13		ry Unit Weigl		110.0
Indrained Sh	ear Strength (kPa)	55.6		ry Unit Weigh		87.0
onaramed one		00.0	D	y one weigh	ir (per)	07.0



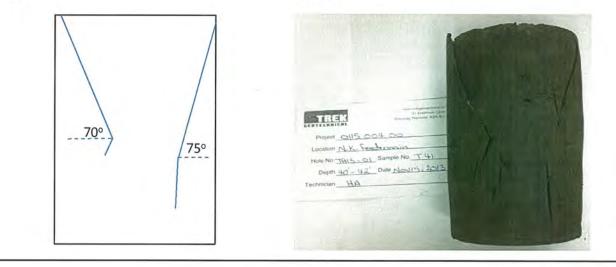
www.trekgeotechnical.ca 1712 St. James Street Winnipeg, MB R3H 0L3 Tel: 204.975.9433 Fax: 204.975.9435

Technician	Hachem Ahmed	Max S _u	53.3	1.1
Test Date	21-Nov-13	Max q _u	106.6	2.2
Sample Date			kPa	ksf
Depth (m)	12 - 12.8 Unconfined Strength			
Sample #	T41			
Test Hole	TH13-01			
Project No. Client Project	0115 004 00 Associated Engineering Detailed Design North Kildonan Feedermain			
	A 44 (1 A 1) + 2 + 1 / 2 + 1			

#### Specimen Data

Description Caly and silt (Alluvial) - Some silty to silt, Trace organics, Trace oxidation, Dark grey, Moist, Stiff, Intermediate

Length	151.6	(mm)	Moisture %	33%	
Diameter	72.5	(mm)	Bulk Unit Wt.	18.2	$(kN/m^3)$
L/D Ratio	2.1		Dry Unit Wt.	13.7	$(kN/m^3)$
Initial Area	0.00413	(m ² )	Liquid Limit	-	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index		

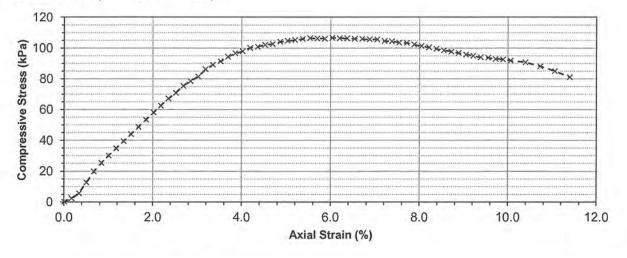

#### Undrained Shear Strength Tests

Torvane Reading Undrained Shear Strength		Pocket Penetrometer				
		Reading	Undrained Shear Strength			
tsf	kPa	ksf	tsf	kPa	ksf	
0.52	51.0	1.07	1.10	54.0	1.13	
Vane Size			1.20	58.9	1.23	
m			1.10	54.0	1.13	
			1.13	55.6	1.16	

#### **Failure Geometry**

Sketch:

Photo:






Unconfined Compressive Strength ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Graph



#### Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004125	0.0	0.00	0.00
10	3	0.2540	0.17	0.004132	9.8	2.37	1.19
20	7	0.5080	0.34	0.004139	22.9	5.53	2.76
30	16	0.7620	0.50	0.004146	52.4	12.63	6.32
40	25	1.0160	0.67	0.004153	82.4	19.85	9.92
50	32	1.2700	0.84	0.004160	105.5	25.36	12.68
60	38	1.5240	1.01	0.004167	125.3	30.07	15.04
70	44	1.7780	1.17	0.004174	145.1	34.75	17.38
80	50	2.0320	1.34	0.004181	164.9	39.43	19.71
90	56	2.2860	1.51	0.004188	184.6	44.09	22.04
100	62	2.5400	1.68	0.004195	204.4	48.72	24.36
110	68	2.7940	1.84	0.004203	224.2	53.35	26.67
120	74	3.0480	2.01	0.004210	244.0	57.96	28.98
130	80	3.3020	2.18	0.004217	263.8	62.55	31.28
140	86	3.5560	2.35	0.004224	283.5	67.12	33.56
150	91	3.8100	2.51	0.004231	300.0	70.91	35.45
160	97	4.0640	2.68	0.004239	319.8	75.45	37.73
170	101	4.3180	2.85	0.004246	333.1	78.45	39.22
180	105	4.5720	3.02	0.004253	346.6	81.48	40.74
190	111	4.8260	3.18	0.004261	366.8	86.08	43.04
200	115	5.0800	3.35	0.004268	380.2	89.09	44.54
210	118	5.3340	3.52	0.004276	390.3	91.29	45.65
220	122	5.5880	3.69	0.004283	403.8	94.28	47.14
230	125	5.8420	3.85	0.004290	413.9	96.47	48.24

TREK Shelby - North Kildonan Feedermain - TH13-01 - T41 Page 2 of 3



Unconfined Compressive Strength ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stres S _u (kPa)
240	127	6.0960	4.0214	0.004298	420.6	97.87	48.93
250	130	6.3500	4.19	0.004305	430.7	100.04	50.02
260	131	6.6040	4.36	0.004313	434.1	100.65	50.32
270	133	6.8580	4.52	0.004321	440.8	102.03	51.01
280	134	7.1120	4.69	0.004328	444.2	102.63	51.31
290	136	7.3660	4.86	0.004336	451.0	104.01	52.00
300	137	7.6200	5.03	0.004343	454.3	104.59	52.30
310	138	7.8740	5.19	0.004351	457.7	105.19	52.59
320	139	8.1280	5.36	0.004359	461.1	105.78	52.89
330	140	8.3820	5.53	0.004367	464.4	106.35	53.18
340	140	8.6360	5.70	0.004374	464.4	106.16	53.08
350	140	8.8900	5.86	0.004382	464.4	105.98	52.99
360	141	9.1440	6.03	0.004390	467.8	106.56	53.28
370	141	9.3980	6.20	0.004398	467.8	106.37	53.18
380	141	9.6520	6.37	0.004406	467.8	106.18	53.09
390	141	9.9060	6.53	0.004414	467.8	105.99	52.99
400	141	10.1600	6.70	0.004421	467.8	105.80	52.90
410	141	10.4140	6.87	0.004429	467.8	105.61	52.80
420	141	10.6680	7.04	0.004437	467.8	105.42	52.71
430	140	10.9220	7.21	0.004445	464.4	104.47	52.23
440	140	11.1760	7.37	0.004453	464.4	104.28	52.14
450	139	11.4300	7.54	0.004462	461.1	103.34	51.67
460	139	11.6840	7.71	0.004470	461.1	103.15	51.58
470	138	11.9380	7.88	0.004478	457.7	102.21	51.11
480	137	12.1920	8.04	0.004486	454.3	101.27	50.64
490	136	12.4460	8.21	0.004494	451.0	100.34	50.17
500	135	12.7000	8.38	0.004502	447.6	99.41	49.71
510	134	12.9540	8.55	0.004511	444.2	98.48	49.24
520	133	13.2080	8.71	0.004519	440.8	97.55	48.78
530	132	13.4620	8.88	0.004527	437.5	96.64	48.32
540	131	13.7160	9.05	0.004536	434.1	95.71	47.86
550	130	13.9700	9.22	0.004544	430.7	94.79	47.40
560	129	14.2240	9.38	0.004552	427.4	93.88	46.94
570	129	14.4780	9.55	0.004561	427.4	93.71	46.86
580	128	14.7320	9.72	0.004569	424.0	92.80	46.40
590	128	14.9860	9.89	0.004578	424.0	92.62	46.31
600	127	15.2400	10.05	0.004586	420.6	91.72	45.86
620	126	15.7480	10.39	0.004603	417.2	90.64	45.32
640	123	16.2560	10.72	0.004621	407.1	88.11	44.06
660	119	16.7640	11.06	0.004638	393.6676	84.88	42.44
680	114	17.2720	11.39	0.004656	376.8533	80.95	40.47
700	105	17.7800	11.73	0.004673	346.5609	74.16	37.08

TREK Shelby - North Kildonan Feedermain - TH13-01 - T41 Page 3 of 3



0115 004 00
Associated Engineering
Detailed Design North Kildonan Feedermain
TH13-04
T08
6.1 - 6.7
15-Nov-13
21-Nov-13
HA

#### **Tube Extraction**

Recovery (mm) 450

Bottom - 6.7				6.1 m - Top
PP Tv Visual Moisture		Qu Y _{Bulk}		
120 mm		170 mm	160 mi	m
Visual Class	ification		Moisture Content	
Material Clay		Tare ID	P10	
Composition	Silty		Mass tare (g)	8.3
Trace silt inclus	sions ( < 10mm dia.)		Mass wet + tare (g)	470.6
Trace gravel			Mass dry + tare (g)	304.4
			Moisture %	56.1%
			Unit Weight	
	Section and the section of the secti		Bulk Weight (g)	1152.10
Color	Dark grey			
Moisture	Moist		Length (mm) 1	150.91
Consistency	Firm		2	150.83
Plasticity	High plasticity		3	150.90
Structure	-		4	150.88
Gradation	+		Average Length (m)	0.151
Torvane			Diam. (mm) 1	72.38
Reading		0.35	2	71.83
Vane Size (s,m	n,l)	m	3	72.08
Undrained She	ear Strength (kPa)	34.3	4	72.63
Deekst Dens	-		Average Diameter (m)	0.072
Pocket Pene Reading	1	0.70	Volume (m ³ )	6.18E-04
leading	2	0.75	Bulk Unit Weight (kN/m ³ )	18.3
	3	0.70	Bulk Unit Weight (kN/m) Bulk Unit Weight (pcf)	116.3
	Average	0.70	Dry Unit Weight (kN/m ³ )	110.3
Indrained Sha	ear Strength (kPa)	35.1	Dry Unit Weight (kN/m ⁻ ) Dry Unit Weight (pcf)	74.5
Undramed She	ai Suengui (Kra)	30.1	bry onit weight (pci)	74.5

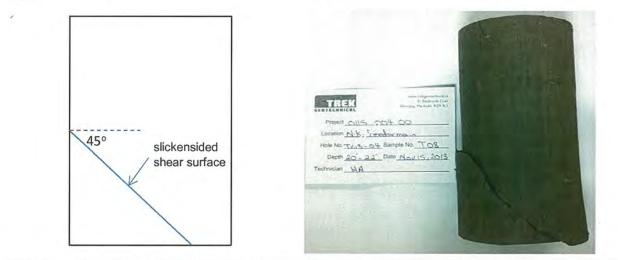


Project No.	0115 004 00			
Client	Associated Engineering			
Project	Detailed Design North Kildonan Feedermain			
Test Hole	TH13-04			
Sample #	T08			
Depth (m)	6.1 - 6.7	Unconfined	Strength	
Sample Date	15-Nov-13		kPa	ksf
Test Date	21-Nov-13	Max q _u	90.0	1.9
Technician	НА	Max S _u	45.0	0.9

#### Specimen Data

Description Clay - Silty, Trace silt inclusions ( < 10mm dia.), Trace gravel, Dark grey, Moist, Firm, High plasticity

Length	150.9	(mm)	Moisture %	56%		
Diameter	72.2	(mm)	Bulk Unit Wt.	18.3	$(kN/m^3)$	
L/D Ratio	2.1		Dry Unit Wt.	11.7	$(kN/m^3)$	
Initial Area	0.00410	(m ² )	Liquid Limit	-		
Load Rate	1.00	(%/min)	Plastic Limit	4		
			Plasticity Index	-		

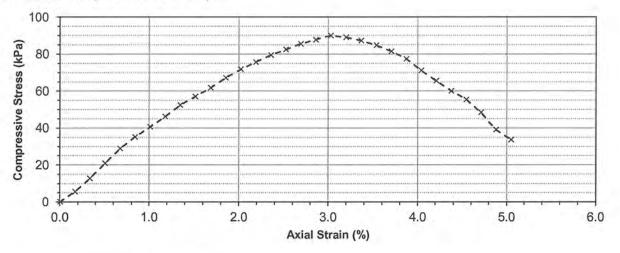

#### Undrained Shear Strength Tests

Torvane			Pocket Pene	etrometer		
Reading	Undrained S	hear Strength	Reading	Undrained S	hear Strength	
tsf	kPa	ksf	tsf	kPa	ksf	
0.35	34.3	0.72	0.70	34.3	0.72	
Vane Size			0.75	36.8	0.77	
m			0.70	34.3	0.72	
			0.72	35.2	0.73	

Failure Geometry

Sketch:

Photo:






Unconfined Compressive Strength ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Graph



#### Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	
0	0	0.0000	0.00	0.004098	0.0	0.00	0.00
10	7	0.2540	0.17	0.004104	22.9	5.58	2.79
20	16	0.5080	0.34	0.004111	52.4	12.74	6.37
30	26	0.7620	0.51	0.004118	85.7	20.81	10.41
40	36	1.0160	0.67	0.004125	118.7	28.77	14.38
50	44	1.2700	0.84	0.004132	145.1	35.10	17.55
60	51	1.5240	1.01	0.004139	168.1	40.62	20.31
70	58	1.7780	1.18	0.004146	191.2	46.12	23.06
80	66	2.0320	1.35	0.004153	217.6	52.39	26.20
90	72	2.2860	1.52	0.004161	237.4	57.06	28.53
100	78	2.5400	1.68	0.004168	257.2	61.70	30.85
110	85	2.7940	1.85	0.004175	280.2	67.12	33.56
120	91	3.0480	2.02	0.004182	300.0	71.74	35.87
130	96	3.3020	2.19	0.004189	316.5	75.56	37.78
140	101	3.5560	2.36	0.004196	333.1	79.37	39.69
150	105	3.8100	2.53	0.004204	346.6	82.44	41.22
160	109	4.0640	2.69	0.004211	360.0	85.49	42.74
170	112	4.3180	2.86	0.004218	370.1	87.75	43.87
180	115	4.5720	3.03	0.004226	380.2	89.98	44.99
190	114	4.8260	3.20	0.004233	376.9	89.03	44.51
200	112	5.0800	3.37	0.004240	370.1	87.29	43.64
210	109	5.3340	3.54	0.004248	360.0	84.75	42.37
220	105	5.5880	3.70	0.004255	346.6	81.45	40.72
230	100	5.8420	3.87	0.004263	329.7	77.35	38.67

TREK Shelby - North Kildonan Feedermain - TH13-04 - T08 Page 2 of 3



Project No.0115 004 00ClientAssociated EngineeringProjectDetailed Design North Kildonan Feedermain

#### Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	92	6.0960	4.0403	0.004270	303.3	71.03	35.52
250	85	6.3500	4.21	0.004278	280.2	65.51	32.76
260	78	6.6040	4.38	0.004285	257.2	60.01	30.01
270	72	6.8580	4.55	0.004293	237.4	55.30	27.65
280	63	7.1120	4.71	0.004300	207.7	48.31	24.15
290	51	7.3660	4.88	0.004308	168.1	39.03	19.52
300	44	7.6200	5.05	0.004316	145.1	33.61	16.81



Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain
Test Hole	TH13-04
Sample #	T13
Depth (m)	9.1 - 9.8
Sample Date	15-Nov-13
Test Date	21-Nov-13
Technician	Hachem Ahmed

#### **Tube Extraction**

450 Recovery (mm)

Bottom - 9.8 m		
PP	Qu	
Visual	YBulk	

170 mm

110 mm

#### ICI :::: . . .

Moisture

Material	Clay		Moisture Content Tare ID	K22
Composition			Mass tare (g)	8.5
Trace silt inclu			Mass wet + tare (g)	462.8
race gravel			Mass dry + tare (g)	351.3
huoo graver			Moisture %	32.5%
			Unit Weight	
			Bulk Weight (g)	1196.70
Color	Dark grey			
Moisture	Moist		Length (mm) 1	152.25
Consistency	Firm		2	152.31
Plasticity	High plasticity		3	152.35
Structure			4	152.39
Gradation	<u>+</u>		Average Length (m)	0.152
Torvane			Diam. (mm) 1	71.81
Reading		0.25	2	72.71
Vane Size (s,	m,l)	m	3	72.43
Undrained Sh	ear Strength (kPa)	24.5	4	72.32
			Average Diameter (m)	0.072
Pocket Pen	etrometer			
Reading	1	0.60	Volume (m ³ )	6.26E-04
	2	0.50	Bulk Unit Weight (kN/n	
	3	0.80	Bulk Unit Weight (pcf)	119.4
	Average	0.63	Dry Unit Weight (kN/m	14.2
Undrained Shear Strength (kPa) 31.1		Dry Unit Weight (pcf)	90.1	

9.1 m - Top

190 mm

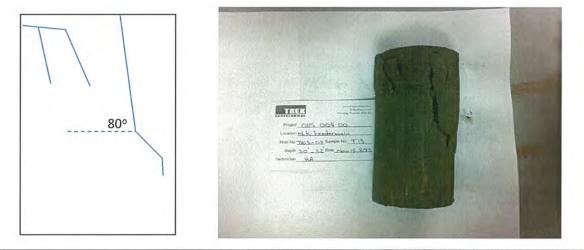


Project No. Client	0115 004 00 Associated Engineering			
Project	Detailed Design North Kildonan Feedermain			
Test Hole	TH13-04			
Sample #	T13			
Depth (m)	9.1 - 9.8	Unconfined	Strength	
Sample Date	15-Nov-13		kPa	ksf
Test Date	21-Nov-13	Max q _u	78.3	1.6
Technician	Hachem Ahmed	Max S _u	39.1	0.8

#### Specimen Data

Description Silty clay - trace silt inclusions, trace gravel, dark grey, moist, firm, high plasticity

Length	152.3	(mm)	Moisture %	33%	
Diameter	72.3	(mm)	Bulk Unit Wt.	18.8	$(kN/m^3)$
L/D Ratio	2.1		Dry Unit Wt.	14.2	$(kN/m^3)$
Initial Area	0.00411	(m ² )	Liquid Limit	- 1	
Load Rate	1.00	(%/min)	Plastic Limit	-	
			Plasticity Index	-	

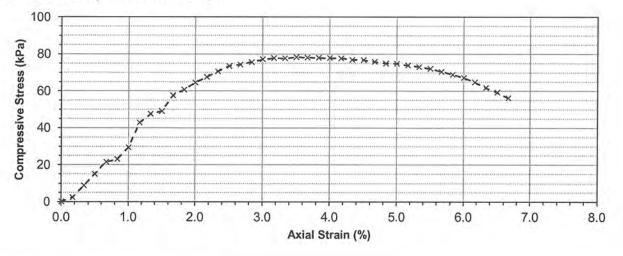

#### **Undrained Shear Strength Tests**

		Pocket Pene	etrometer		
Undrained Sh	near Strength	Reading	Undrained S	hear Strength	
kPa	ksf	tsf	kPa	ksf	
24.5	0.51	0.60	29.4	0.61	
		0.50	24.5	0.51	
		0.80	39.2	0.82	
		0.63	31.1	0.65	
	kPa		Undrained Shear StrengthReadingkPaksftsf24.50.510.600.500.80	Undrained Shear StrengthReadingUndrained SkPaksftsfkPa24.50.510.6029.40.5024.50.8039.2	Undrained Shear StrengthReading tsfUndrained Shear StrengthkPaksftsfkPaksf24.50.510.6029.40.610.5024.50.510.8039.20.82

#### Failure Geometry

Sketch:

Photo:






Unconfined Compressive Strength ASTM D2166

Project No.	0115 004 00
Client	Associated Engineering
Project	Detailed Design North Kildonan Feedermain

#### Unconfined Compression Test Graph



#### Unconfined Compression Test Data

Deformation Dial Reading	Load Ring Dial Reading	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
0	0	0.0000	0.00	0.004107	0.0	0.00	0.00
10	3	0.2540	0.17	0.004114	9.8	2.38	1.19
20	11	0.5080	0.33	0.004121	36.0	8.73	4.37
30	19	0.7620	0.50	0.004128	62.2	15.07	7.54
40	27	1.0160	0.67	0.004135	89.0	21.53	10.76
50	29	1.2700	0.83	0.004142	95.6	23.08	11.54
60	37	1.5240	1.00	0.004149	122.0	29.40	14.70
70	54	1.7780	1.17	0.004156	178.0	42.83	21.42
80	60	2.0320	1.33	0.004163	197.8	47.52	23.76
90	62	2.2860	1.50	0.004170	204.4	49.01	24.51
100	73	2.5400	1.67	0.004177	240.7	57.62	28.81
110	77	2.7940	1.83	0.004184	253.9	60.67	30.34
120	82	3.0480	2.00	0.004191	270.4	64.50	32.25
130	86	3.3020	2.17	0.004199	283.5	67.53	33.77
140	90	3.5560	2.33	0.004206	296.7	70.56	35.28
150	94	3.8100	2.50	0.004213	309.9	73.56	36.78
160	95	4.0640	2.67	0.004220	313.2	74.22	37.11
170	97	4.3180	2.83	0.004227	319.8	75.66	37.83
180	99	4.5720	3.00	0.004235	326.4	77.08	38.54
190	100	4.8260	3.17	0.004242	329.7	77.73	38.86
200	100	5.0800	3.33	0.004249	329.7	77.59	38.80
210	101	5.3340	3.50	0.004257	333.1	78.25	39.13
220	101	5.5880	3.67	0.004264	333.1	78.12	39.06
230	101	5.8420	3.84	0.004271	333.1	77.98	38.99

TREK Shelby - North Kildonan Feedermain - TH13-04 - T13 Page 2 of 3



Unconfined Compressive Strength ASTM D2166

Project No.0115 004 00ClientAssociated EngineeringProjectDetailed Design North Kildonan Feedermain

Unconfined Compression Test Data (cont'd)

Elapsed Time (s)	Axial Disp. (mm)	Deflection (mm)	Axial Strain (%)	Corrected Area (m ² )	Axial Load (N)	Compressive Stress, q _u (kPa)	Shear Stress, S _u (kPa)
240	101	6.0960	4.0020	0.004279	333.1	77.85	38.92
250	101	6.3500	4.17	0.004286	333.1	77.71	38.86
260	100	6.6040	4.34	0.004294	329.7	76.79	38.39
270	100	6.8580	4.50	0.004301	329.7	76.65	38.33
280	99	7.1120	4.67	0.004309	326.4	75.76	37.88
290	98	7.3660	4.84	0.004316	323.1	74.86	37.43
300	98	7.6200	5.00	0.004324	323.1	74.73	37.37
310	97	7.8740	5.17	0.004331	319.8	73.84	36.92
320	96	8.1280	5.34	0.004339	316.5	72.95	36.48
330	95	8.3820	5.50	0.004347	313.2	72.05	36.03
340	93	8.6360	5.67	0.004354	306.6	70.42	35.21
350	91	8.8900	5.84	0.004362	300.0	68.78	34.39
360	89	9.1440	6.00	0.004370	293.4	67.15	33.58
370	86	9.3980	6.17	0.004378	283.5	64.77	32.38
380	82	9.6520	6.34	0.004385	270.4	61.65	30.83
390	79	9.9060	6.50	0.004393	260.4	59.28	29.64
400	75	10.1600	6.67	0.004401	247.3	56.19	28.09



Appendix D

Unconfined Compressing Testing Results (bedrock cores)

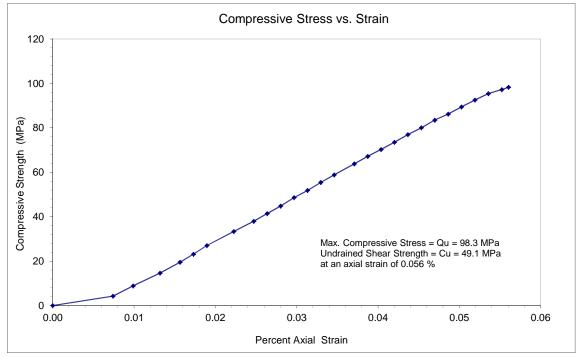


#### LABORATORY TESTING RESULTS DECEMBER 2013

DRILL	SAMPLE	DE	PTH	COMPR	RESSIVE	MATERIAL	
HOLE	#	FROM	то	STRENGTH			
NUMBER				Cu	Strain		
		(FT)	(FT)	(MPa)	(%)		
TH13-01	CB57	65' 4"	66'	49.1	0.056	Limestone	
	CB64	99' 9"	100' 5"	31.2	0.042	Limestone	
	CB65	101' 4"	102' 2"	21.8	0.045	Limestone	
	CB67	114'	114' 11"	33.1	0.066	Limestone	
TH13-05	CB72	62' 9"	63' 6"	39.5	0.048	Limestone	
	CB74	71' 5"	72' 4"	39.5	0.081	Limestone	
	CB79	97' 4"	98' 3"	11.9	0.037	Limestone	



#### UNCONFINED COMPRESSION TEST REPORT


TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-1c

#### **Unconfined Compressive Strengths**

TEST DATE:Dec 4/13SAMPLE:TH13-01, CB57, @ 65'-4" to 66'DESCRIPTION:Limestone, massive.

Wet Density (kg/m ³ ):	2487
Dry Density (kg/m ³ ):	2478
Moisture Content (%):	0.4

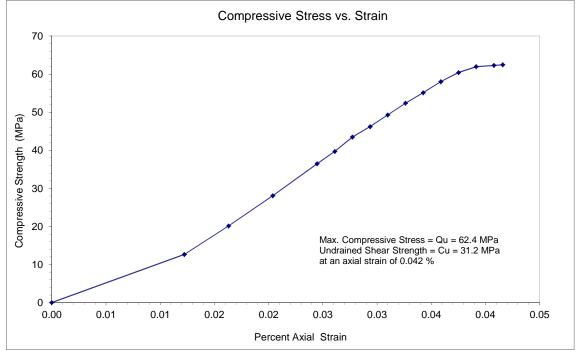






#### UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-4c


#### **Unconfined Compressive Strengths**

TEST DATE:Dec 4/13SAMPLE:TH13-01, CB6DESCRIPTION:Limestone, not

Dec 4/13 TH13-01, CB64, @ 99'-9" to 100'-5" Limestone, nodular.

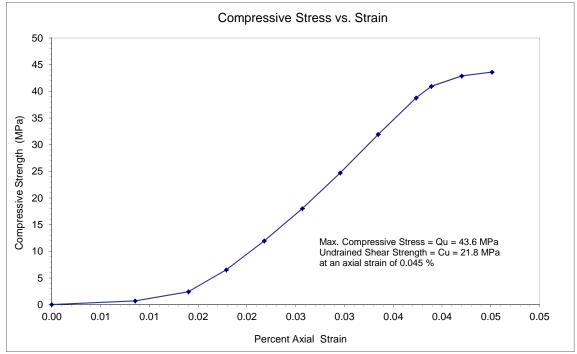
Wet Density (kg/m ³ ):	2561
Dry Density (kg/m ³ ):	2535
Moisture Content (%):	1.0







#### UNCONFINED COMPRESSION TEST REPORT


TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-2c

#### **Unconfined Compressive Strengths**

TEST DATE:Dec 4/13SAMPLE:TH13-01, CB65, @ 101'-4" to 102'-2"DESCRIPTION:Limestone, nodular.

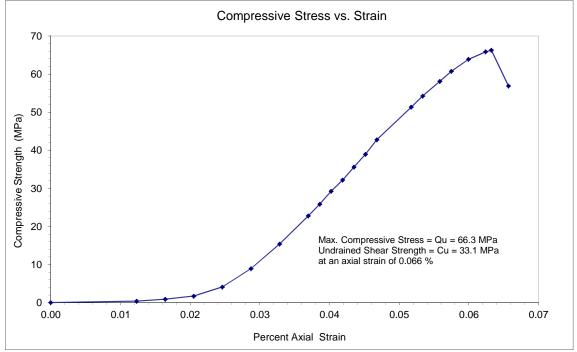
Wet Density (kg/m ³ ):	2305
Dry Density (kg/m ³ ):	2206
Moisture Content (%):	4.5







#### UNCONFINED COMPRESSION TEST REPORT


TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-3c

#### **Unconfined Compressive Strengths**

TEST DATE:Dec 4/13SAMPLE:TH13-01, CB67, @ 114' to 114'-11"DESCRIPTION:Limestone, nodular.

Wet Density (kg/m ³ ):	2547
Dry Density (kg/m ³ ):	2502
Moisture Content (%):	1.8

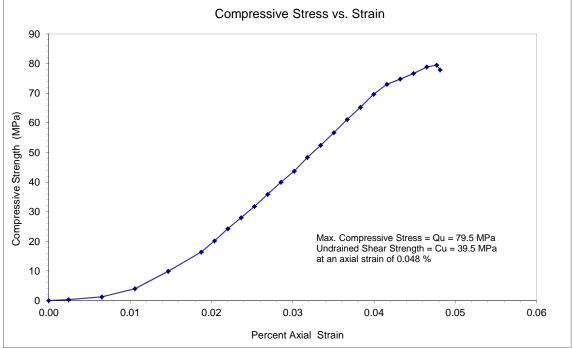






#### UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-5c


#### **Unconfined Compressive Strengths**

TEST DATE: Dec 4/13 SAMPLE: TH13-05 DESCRIPTION: Limestor

Dec 4/13 TH13-05, CB72, @ 62'-9" to 63'-6" Limestone, massive.

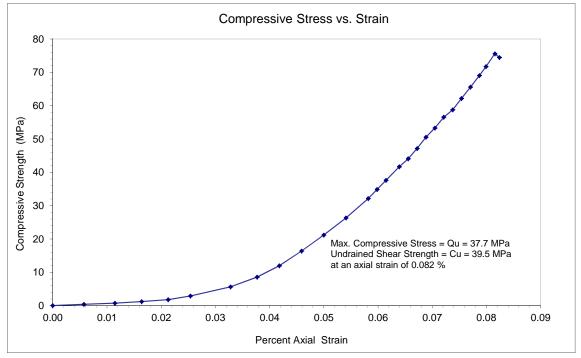
Wet Density (kg/m ³ ):	2647
Dry Density (kg/m ³ ):	2633
Moisture Content (%):	0.6







#### UNCONFINED COMPRESSION TEST REPORT


TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-6c

#### **Unconfined Compressive Strengths**

TEST DATE:Dec 4/13SAMPLE:TH13-05, CB74, @ 71'-5" to 72'-4"DESCRIPTION:Limestone, massive.

Wet Density (kg/m ³ ):	2534
Dry Density (kg/m ³ ):	2496
Moisture Content (%):	1.5

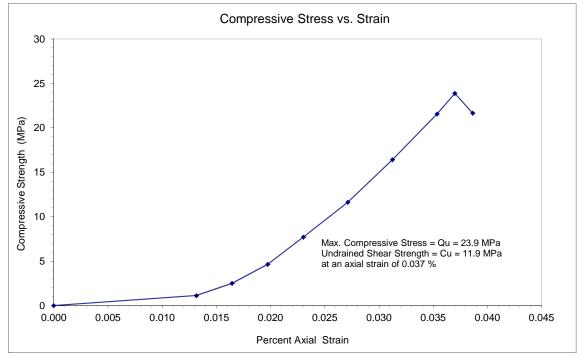






#### UNCONFINED COMPRESSION TEST REPORT

TREK GEOTECHNICAL INC FILE NUMBER : 19-6104-3 REPORT DATE: Dec 4/13 REPORT NUMBER: UC13-7c


#### **Unconfined Compressive Strengths**

TEST DATE: Dec 4/13 SAMPLE: TH13-05, CE DESCRIPTION: Limestone, r

Dec 4/13 TH13-05, CB79, @ 97'-4" to 98'-3" Limestone, nodular.

Wet Density (kg/m ³ ):	2388
Dry Density (kg/m ³ ):	2256
Moisture Content (%):	5.8





# Appendix A Soils Investigation Report

Addendum No.1

TREK Geotechnical: North Kildonan Feedermain – Micro Tunnelling Option Considerations



February 11, 2015

File No. 0115 004 00

Mr. Colin McKinnon, P.Eng., PMP Associated Engineering 203 - # Five Donald Street Winnipeg, Manitoba R3L 2T4

#### **RE** North Kildonan Feedermain – Micro Tunnelling Option Considerations Addendum No. 1

This letter is an addendum to the geotechnical report issued by TREK Geotechnical Inc. (TREK) on January 15th, 2014 to Associated Engineering for the detailed design of the North Kildonan Feedermain replacement. TREK understands that a micro tunneling installation option is now under consideration; our January 2014 provided geotechnical considerations for directional drilling. The addendum provides commentary and geotechnical considerations for the micro tunnelling option, including shaft locations relative to riverbank set-backs, and suitability of the installation technique for the soil and bedrock conditions at the site. Geological and hydrogeological information for the area relevant to the micro tunnelling option is provided in the attached letter from W.L Gibbons & Associates Inc.

#### **Shafts and Tunnel Alignment**

The shaft and tunnel locations for the micro tunnelling option are provided in plan and profile on Drawing 10 and 11 respectively (attached). The shafts are located about 58 m and 44 m from the regulated summer water level (RSWL) of 223.72 m on the west and east sides of the river respectively. A temporary working shaft will be required on each bank with the diameter to be determined by the contractor. A permanent 1.5 m diameter shaft is to be installed within the temporary shafts to carry the 600 mm diameter feedermain. A tunnel is to be bored between the two shafts at an approximate elevation 203.0 m and a 1.2 m diameter casing is to be installed within the tunnel to carry the feedermain below the river at that elevation.

#### **Riverbank Set-Back**

A stability analysis was performed to evaluate the existing stability of the west and east riverbanks and to identify the geometry of a theoretical slip surface associated with a minimum factor of safety (FS) of 1.5 in the vicinity of each shaft. Details of the analysis and the rationale for selecting a factor of safety design objective of 1.5 are provided in the January 2014 geotechnical report. The analysis indicates the existing FS for both banks (for the critical slip



surface) is greater than 1.3 and is considered to be greater than 1.5 on the west bank when taking 3-D geometric affects into consideration. The location of the point on the ground which coincides with a minimum FS of 1.5 is shown as a set-back in plan on Drawing 10 and in section in Drawing 11.

Since both the west and east shafts are located where the factor of safety is greater than 1.5, riverbank stabilization works are not considered necessary.

#### **Sub-Surface Conditions**

The geotechnical report includes sub-surface information based on test holes drilled near the alignment and historical test holes drilled for the nearby Kildonan Settlers Bridge. The bedrock and groundwater conditions are key considerations in evaluating the suitability of the micro tunneling option. Sub-surface information pertinent to the micro tunnelling installation method are summarized herein. Detailed descriptions of soil types, bedrock, and groundwater conditions encountered at the site are presented in TREK's January 2014 geotechnical report. All interpretations of soil/bedrock stratigraphy and groundwater conditions for design and construction should refer to the January 2014 geotechnical report.

The bedrock stratigraphy generally consists of dolomite, dolomitic mudstone and dolomitic limestone. A thin layer of mudstone was encountered on the east bank between the dolomite and dolomitic mudstone at about elevation 203.0 m. The top metre of bedrock below the till (dolomite) may be broken, highly fractured, or thinly bedded. Below the upper 1 m, the dolomite is generally competent (sound) with a rock quality designation (RQD) greater than 70%. Test holes drilled along the proposed alignment indicate the bedrock at the east riverbank (TH13-01) contains two zones of unsound bedrock; RQDs of less than 35% were recorded from elevations 207.5 m to 202.7 m and from elevations 196.6 m to 193.5 m. A zone of unsound bedrock was also encountered in the vicinity of TH16, drilled during sub-surface exploration work for the design of the bridge.

Groundwater levels measured in the glacial till and bedrock are comparable, indicating the two geological units are hydraulically connected. Measured groundwater levels also show that a hydraulic connection exists between the river and the till/bedrock aquifer, but may also be influenced by regional levels.

#### **Geotechnical Considerations for Micro Tunnelling Option**

The following geotechnical considerations apply to the proposed mirco tunneling option:

• Seepage and sloughing can be expected from alluvial soils and till during shaft excavation and installation of shoring. Dewatering may be required to maintain a stable excavation base.



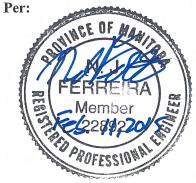
- Groundwater can be expected in the shafts within the till/bedrock units. Groundwater levels in the till and bedrock are strongly influenced by the river and therefore, groundwater levels in these units can be higher in the spring/summer and lower in the fall/winter.
- The proposed horizontal tunnel alignment is within the top 7 m of the bedrock at about elevation 203.0 m. Significant variability in rock quality and strength can be expected within this zone and bedrock fractures may be infilled with clay (rock flour), particularly in unsound bedrock.
- Open horizontal and vertical fractures in the shallow bedrock coincident along the tunnel alignment may produce significant quantities of groundwater from the shallow (Upper Carbonate) bedrock aquifer. These fractures may also be hydraulically connected to the channel bottom.

#### **Closure**

The geotechnical information provided in this letter is in accordance with current engineering principles and practices (Standard of Practice). The findings of this letter were based on information provided (field investigation, laboratory testing, geometries). Soil conditions are natural deposits that can be highly variable across a site. If sub-surface conditions are different than the conditions previously encountered on-site or those presented here, we should be notified to adjust our findings if necessary.

All information provided in this letter is subject to our standard terms and conditions for engineering services, a copy of which is provided to each of our clients with the original scope of work, or a mutually executed standard engineering services agreement. If these conditions are not attached, and you are not already in possession of such terms and conditions, contact our office and you will be promptly provided with a copy.

This letter has been prepared by TREK Geotechnical Inc. (the Consultant) for the exclusive use of Associated Engineering (the Client) and their agents for the work product presented in the report. Any findings or recommendations provided in this letter are not to be used or relied upon by any third parties, except as agreed to in writing by the Client and Consultant prior to use.




Associated Engineering Ltd. North Kildonan Feedermain Addendum No. I - Micro Tunnelling Option Considerations Page 4 of 4 February 11, 2015

If you have any questions or require any additional information, please contact the undersigned.

Kind Regards,

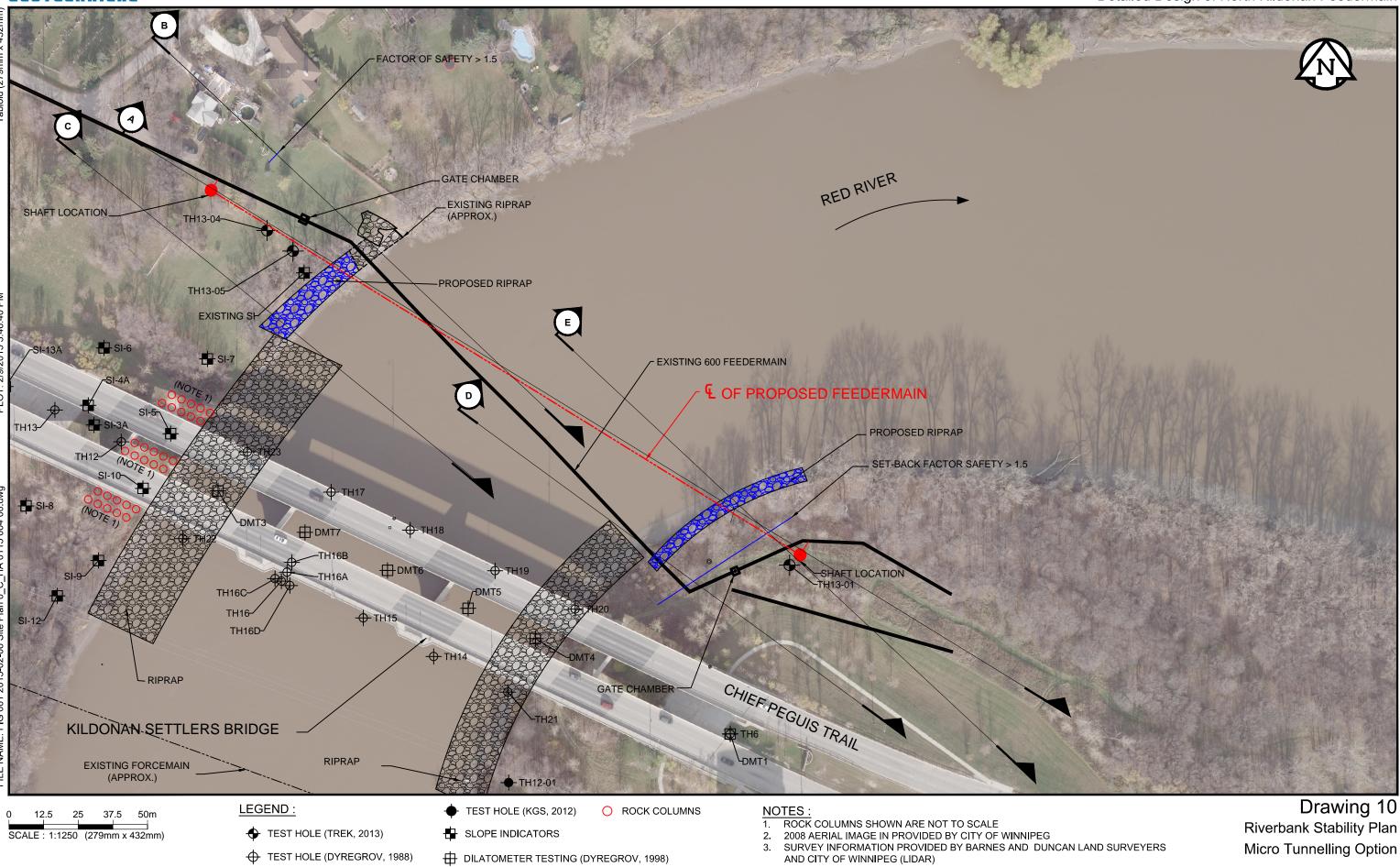
### **TREK Geotechnical**



Nelson John Ferreira M.Sc., P.Eng. Geotechnical Engineer

Attachments: Drawing 10 & 11 W.L Gibbons Letter Report

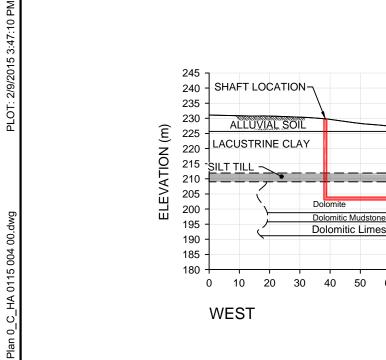



**Reviewed By:** 

Ken Skaftfeld, M.Sc., P.Eng.

Senior Geotechnical Engineer

Z:\Projects\0115 Associated Engineering\0115 004 00 Detailed Design North Kildonan Feedermain\4 Docs\4.4 Deliverables\Addendum #1\ADD 15-02-03 NK Feedermain Micro Tunnelling 0_Final 0115 004 00.docx






## 0115 004 00

Associated Engineering Detailed Design of North Kildonan Feedermain





**CROSS-SECTION A** 

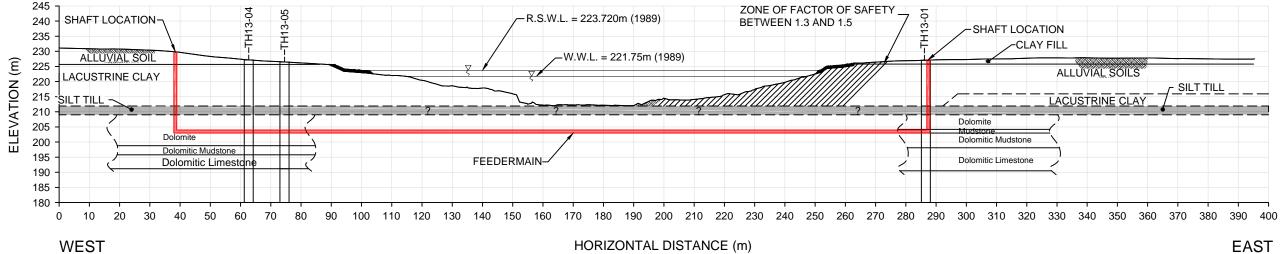





FIG 001 2015-02-06 Site

FILE NAME:

## 0115 004 00

Associated Engineering Detailed Design of North Kildonan Feedermain

Drawing 11 Riverbank Stability and Proposed Feedermain Profile Micro Tunnelling Option



W.L. Gibbons & Associates Inc.

64 St. Andrew Road Winnipeg, MB R2M 3H6

## **Technical Memorandum**

Date: February 10, 2015 To: Nelson Ferreira, P.Eng. From: Steve Wiecek, P.Geo., P.Eng. Subject: North Kildonan Feedermain

In response to your request of February 8 2015, W.L. Gibbons & Associates Inc. (WLG) is pleased to provide the following supplementary information concerning the geologic and hydrogeologic properties in the area of the proposed North Kildonan Feedermain.

#### Limestone Abrasivity

We are unaware of any abrasivity testing having been done specifically on the limestone and dolomite bedrock in the Winnipeg area. Based on published literature, limestone typically has a CHERCHAR Abrasivity Index (CAI) in the range of 0.75 to 1.75, which is considered to be a low to medium abrasivity. As is noted in the Trek Report for this project (North Kildonan Feedermain Detailed Design – Geotechnical Report), the bedrock beneath this site consists of a complex assemblage of dolomitic limestone, dolomite, dolomitic mudstone and mudstone. As such the abrasivity properties of the bedrock will vary across the site, and will likely trend towards the medium abrasivity end of the typical range due to the dolomitic nature of most of the bedrock. It is also noted, that chert nodules are present within the bedrock, which would increase the abrasivity due to the silica content.

#### Presence of Gas in the Bedrock

Gas has been encountered within the bedrock in the Winnipeg area, particularly methane and hydrogen sulphide gas. As such, the contractor should take the appropriate precautions to protect any workers that may be entering any tunnels or excavations. These precautions would include but not be limited to ongoing air quality monitoring, and the implementation of procedures for working in environments were the accumulation of various gases is a potential concern.

#### **Groundwater Quality**

The groundwater within the bedrock aquifer beneath the site has a total dissolved solids (TDS) concentration in the range of 600 to 1,000 mg/l. Groundwater with a TDS concentration of less than 1,000 mg/l is considered to be fresh water (brackish water has a TDS concentration between 1,000 and 10,000 mg/l, and saline water has a TDS concentration of greater than

Mr. N. Ferreira, P. Eng. February 10, 2015 Page 2

10,000 mg/l). Although the water is considered fresh based on TDS concentration, testing of the water quality should be completed at the time of construction to verify that the water quality is acceptable for discharge to the intended discharge point (river, stormwater system or wastewater system), or if containment and treatment is required before discharge.